ΑΙhub.org
 

How to benefit from AI without losing your human self – a fireside chat from IEEE Computational Intelligence Society


by
02 December 2024



share this:

The image is a very detailed, black-and-white sketch-like illustration featuring a complex scene of interconnected figures and technology. The artwork portrays various individuals in different environments to represent the relationship between technology and humans. 

In the foreground, multiple people are surrounded by computer screens filled with data visualisations, charts, and technical information. A woman seated in an armchair appears deep in thought, surrounded by data-filled monitors. Beside her, a man leans over, using a tablet to assist with their inspection of a plant or tree. In the centre, a figure holds a large frame or screen displaying anatomical illustrations, representing the use of AI to analyse medical imagery. To the left, another person is intently observing a computer screen, while a second figure nearby is deeply immersed in analysing data. A woman dominates the right side of the composition, gazing upwards as if in contemplation or envisioning something beyond the immediate scene. The background features more people, including a family holding hands, and other abstract representations of data.Ariyana Ahmad & The Bigger Picture / Better Images of AI / AI is Everywhere / Licenced by CC-BY 4.0

In this fireside chat from IEEE Computational Intelligence Society, Tayo Obafemi-Ajayi (Missouri State University) asks Hava T. Siegelmann (University of Massachusetts, Amherst) about how to benefit from AI without losing your human self.

You can watch the chat in full below:




IEEE Computational Intelligence Society




            AIhub is supported by:


Related posts :



Interview with Yuki Mitsufuji: Improving AI image generation

  23 Jan 2025
Find out about two pieces of research tackling different aspects of image generation.

The Good Robot podcast: Using feminist chatbots to fight trolls with Sarah Ciston

  22 Jan 2025
Eleanor and Kerry chat to Sarah Ciston about the difficult labor of content moderation, chatbots to combat trolls, and more.

An open-source training framework to advance multimodal AI

  22 Jan 2025
EPFL researchers have developed 4M, a next-generation, framework for training versatile and scalable multimodal foundation models.

Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.

Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.

The Machine Ethics podcast: 2024 in review with Karin Rudolph and Ben Byford

Karin Rudolph and Ben Byford talk about 2024 touching on the EU AI Act, agent-based AI and advertising, AI search and access to information, conflicting goals of many AI agents, and much more.

Playbook released with guidance on creating images of AI

  15 Jan 2025
Archival Images of AI project enables the creation of meaningful and compelling images of AI.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association