ΑΙhub.org
 

Visualizing nanoparticle dynamics using AI-based method


by
04 March 2025



share this:

Static image taken from video (shown below). Left: a platinum nanoparticle imaged via electron microscopy. Right: using AI-based method to remove the noise.

By Patricia Waldron

A team of scientists has developed a method to illuminate the dynamic behavior of nanoparticles. The work, reported in Visualizing Nanoparticle Surface Dynamics and Instabilities Enabled by Deep Denoising, in the journal Science, combines artificial intelligence with electron microscopy to render visuals of how these tiny bits of matter respond to stimuli.

“The nature of changes in the particle is exceptionally diverse, including fluxional periods, manifesting as rapid changes in atomic structure, particle shape, and orientation; understanding these dynamics requires new statistical tools,” said David S. Matteson (Cornell University), one of the paper’s authors. “This study introduces a new statistic that utilizes topological data analysis to both quantify fluxionality and to track the stability of particles as they transition between ordered and disordered states.”

On the left, a platinum nanoparticle imaged via electron microscopy displays individual atoms but is heavily corrupted by noise. The image on the right shows the results of an AI system that effectively removes the noise to reveal the atomic structure of the nanoparticle.

The work, which also included researchers from New York University, Arizona State University and the University of Iowa, blends electron microscopy with AI to enable scientists to see the structures and movements of molecules that are one-billionth of a meter in size at an unprecedented time resolution.

“Nanoparticle-based catalytic systems have a tremendous impact on society,” said co-author Carlos Fernandez-Granda (NYU). “It is estimated that 90 percent of all manufactured products involve catalytic processes somewhere in their production chain. We have developed an artificial-intelligence method that opens a new window for the exploration of atomic-level structural dynamics in materials.”

Observing the movement of atoms on a nanoparticle is crucial to understand functionality in industrial applications. The problem is that the atoms are barely visible in the data, so scientists cannot be sure how they are behaving—the equivalent of tracking objects in a video taken at night with an old camera. To address this challenge, the paper’s authors trained a deep neural network that is able to “light up” the electron-microscope images, revealing the underlying atoms and their dynamic behavior.

“Electron microscopy can capture images at a high spatial resolution, but because of the velocity at which the atomic structure of nanoparticles changes during chemical reactions, we need to gather data at a very high speed to understand their functionality,” said co-author Peter A. Crozier (Arizona State University).

“This results in extremely noisy measurements. We have developed an artificial-intelligence method that learns how to remove this noise—automatically—enabling the visualization of key atomic-level dynamics.”

The research was supported by grants from the National Science Foundation.



tags:


Cornell University




            AIhub is supported by:



Related posts :



Discrete flow matching framework for graph generation

and   17 Sep 2025
Read about work presented at ICML 2025 that disentangles sampling from training.

We risk a deluge of AI-written ‘science’ pushing corporate interests – here’s what to do about it

  16 Sep 2025
A single individual using AI can produce multiple papers that appear valid in a matter of hours.

Deploying agentic AI: what worked, what broke, and what we learned

  15 Sep 2025
AI scientist and researcher Francis Osei investigates what happens when Agentic AI systems are used in real projects, where trust and reproducibility are not optional.

Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.

The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence