ΑΙhub.org
 

Visualizing nanoparticle dynamics using AI-based method


by
04 March 2025



share this:

Static image taken from video (shown below). Left: a platinum nanoparticle imaged via electron microscopy. Right: using AI-based method to remove the noise.

By Patricia Waldron

A team of scientists has developed a method to illuminate the dynamic behavior of nanoparticles. The work, reported in Visualizing Nanoparticle Surface Dynamics and Instabilities Enabled by Deep Denoising, in the journal Science, combines artificial intelligence with electron microscopy to render visuals of how these tiny bits of matter respond to stimuli.

“The nature of changes in the particle is exceptionally diverse, including fluxional periods, manifesting as rapid changes in atomic structure, particle shape, and orientation; understanding these dynamics requires new statistical tools,” said David S. Matteson (Cornell University), one of the paper’s authors. “This study introduces a new statistic that utilizes topological data analysis to both quantify fluxionality and to track the stability of particles as they transition between ordered and disordered states.”

On the left, a platinum nanoparticle imaged via electron microscopy displays individual atoms but is heavily corrupted by noise. The image on the right shows the results of an AI system that effectively removes the noise to reveal the atomic structure of the nanoparticle.

The work, which also included researchers from New York University, Arizona State University and the University of Iowa, blends electron microscopy with AI to enable scientists to see the structures and movements of molecules that are one-billionth of a meter in size at an unprecedented time resolution.

“Nanoparticle-based catalytic systems have a tremendous impact on society,” said co-author Carlos Fernandez-Granda (NYU). “It is estimated that 90 percent of all manufactured products involve catalytic processes somewhere in their production chain. We have developed an artificial-intelligence method that opens a new window for the exploration of atomic-level structural dynamics in materials.”

Observing the movement of atoms on a nanoparticle is crucial to understand functionality in industrial applications. The problem is that the atoms are barely visible in the data, so scientists cannot be sure how they are behaving—the equivalent of tracking objects in a video taken at night with an old camera. To address this challenge, the paper’s authors trained a deep neural network that is able to “light up” the electron-microscope images, revealing the underlying atoms and their dynamic behavior.

“Electron microscopy can capture images at a high spatial resolution, but because of the velocity at which the atomic structure of nanoparticles changes during chemical reactions, we need to gather data at a very high speed to understand their functionality,” said co-author Peter A. Crozier (Arizona State University).

“This results in extremely noisy measurements. We have developed an artificial-intelligence method that learns how to remove this noise—automatically—enabling the visualization of key atomic-level dynamics.”

The research was supported by grants from the National Science Foundation.



tags:


Cornell University




            AIhub is supported by:


Related posts :



Exploring counterfactuals in continuous-action reinforcement learning

  20 Jun 2025
Shuyang Dong writes about her work that will be presented at IJCAI 2025.

What is vibe coding? A computer scientist explains what it means to have AI write computer code − and what risks that can entail

  19 Jun 2025
Until recently, most computer code was written, at least originally, by human beings. But with the advent of GenAI, that has begun to change.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

  18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Interview with Mahammed Kamruzzaman: Understanding and mitigating biases in large language models

  17 Jun 2025
Find out how Mahammed is investigating multiple facets of biases in LLMs.

Google’s SynthID is the latest tool for catching AI-made content. What is AI ‘watermarking’ and does it work?

  16 Jun 2025
Last month, Google announced SynthID Detector, a new tool to detect AI-generated content.

The Good Robot podcast: Symbiosis from bacteria to AI with N. Katherine Hayles

  13 Jun 2025
In this episode, Eleanor and Kerry talk to N. Katherine Hayles about her new book, and discuss how the biological concept of symbiosis can inform the relationships we have with AI.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

  12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Graphic novel explains the environmental impact of AI

  11 Jun 2025
EPFL’s Center for Learning Sciences has released Utop’IA, an educational graphic novel that explores the environmental impact of artificial intelligence.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence