ΑΙhub.org
 

Visualizing nanoparticle dynamics using AI-based method


by
04 March 2025



share this:

Static image taken from video (shown below). Left: a platinum nanoparticle imaged via electron microscopy. Right: using AI-based method to remove the noise.

By Patricia Waldron

A team of scientists has developed a method to illuminate the dynamic behavior of nanoparticles. The work, reported in Visualizing Nanoparticle Surface Dynamics and Instabilities Enabled by Deep Denoising, in the journal Science, combines artificial intelligence with electron microscopy to render visuals of how these tiny bits of matter respond to stimuli.

“The nature of changes in the particle is exceptionally diverse, including fluxional periods, manifesting as rapid changes in atomic structure, particle shape, and orientation; understanding these dynamics requires new statistical tools,” said David S. Matteson (Cornell University), one of the paper’s authors. “This study introduces a new statistic that utilizes topological data analysis to both quantify fluxionality and to track the stability of particles as they transition between ordered and disordered states.”

On the left, a platinum nanoparticle imaged via electron microscopy displays individual atoms but is heavily corrupted by noise. The image on the right shows the results of an AI system that effectively removes the noise to reveal the atomic structure of the nanoparticle.

The work, which also included researchers from New York University, Arizona State University and the University of Iowa, blends electron microscopy with AI to enable scientists to see the structures and movements of molecules that are one-billionth of a meter in size at an unprecedented time resolution.

“Nanoparticle-based catalytic systems have a tremendous impact on society,” said co-author Carlos Fernandez-Granda (NYU). “It is estimated that 90 percent of all manufactured products involve catalytic processes somewhere in their production chain. We have developed an artificial-intelligence method that opens a new window for the exploration of atomic-level structural dynamics in materials.”

Observing the movement of atoms on a nanoparticle is crucial to understand functionality in industrial applications. The problem is that the atoms are barely visible in the data, so scientists cannot be sure how they are behaving—the equivalent of tracking objects in a video taken at night with an old camera. To address this challenge, the paper’s authors trained a deep neural network that is able to “light up” the electron-microscope images, revealing the underlying atoms and their dynamic behavior.

“Electron microscopy can capture images at a high spatial resolution, but because of the velocity at which the atomic structure of nanoparticles changes during chemical reactions, we need to gather data at a very high speed to understand their functionality,” said co-author Peter A. Crozier (Arizona State University).

“This results in extremely noisy measurements. We have developed an artificial-intelligence method that learns how to remove this noise—automatically—enabling the visualization of key atomic-level dynamics.”

The research was supported by grants from the National Science Foundation.



tags:


Cornell University




            AIhub is supported by:


Related posts :



Interview with AAAI Fellow Roberto Navigli: multilingual natural language processing

  21 Mar 2025
Roberto tells us about his career path, some big research projects he’s led, and why it’s important to follow your passion.

Museums have tons of data, and AI could make it more accessible − but standardizing and organizing it across fields won’t be easy

  20 Mar 2025
How can AI models help organize large amounts of data from different collections, and what are the challenges?

Shlomo Zilberstein wins the 2025 ACM/SIGAI Autonomous Agents Research Award

  19 Mar 2025
Congratulations to Shlomo Zilberstein on winning this prestigious award!

#AAAI2025 workshops round-up 1: Artificial intelligence for music, and towards a knowledge-grounded scientific research lifecycle

  18 Mar 2025
We hear from the organisers of two workshops at AAAI2025 and find out the key takeaways from their events.

The Good Robot podcast: Re-imagining voice assistants with Stina Hasse Jørgensen and Frederik Juutilainen

  17 Mar 2025
Eleanor and Kerry chat to Stina Hasse Jørgensen and Frederik Juutilainen about an experimental research project that created an alternative voice assistant.

Visualizing research in the age of AI

  14 Mar 2025
Felice Frankel discusses the implications of generative AI when communicating science visually.

#IJCAI panel on communicating about AI with the public

  13 Mar 2025
A recording of this session at IJCAI2024 is now available to watch.

Interview with Tunazzina Islam: Understand microtargeting and activity patterns on social media

  11 Mar 2025
Hear from Doctoral Consortium participant Tunazzina about her research on computational social science, natural language processing, and social media mining and analysis




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association