ΑΙhub.org
 

Andrew Barto and Richard Sutton win 2024 Turing Award


by
06 March 2025



share this:

Andrew Barto and Richard Sutton. Image credit: Association for Computing Machinery.

The Association for Computing Machinery, has named Andrew Barto and Richard Sutton as the recipients of the 2024 ACM A.M. Turing Award. The pair have received the honour for “developing the conceptual and algorithmic foundations of reinforcement learning”. In a series of papers beginning in the 1980s, Barto and Sutton introduced the main ideas, constructed the mathematical foundations, and developed important algorithms for reinforcement learning.

The Turing Award comes with a $1 million prize, to be split between the recipients. Since its inception in 1966, the award has honoured computer scientists and engineers on a yearly basis. The prize was last given for AI research in 2018, when Yoshua Bengio, Yann LeCun and Geoffrey Hinton were recognised for their contribution to the field of deep neural networks.

Andrew Barto is Professor Emeritus, Department of Information and Computer Sciences, University of Massachusetts, Amherst. He began his career at UMass Amherst as a postdoctoral Research Associate in 1977, and has subsequently held various positions including Associate Professor, Professor, and Department Chair. Barto received a BS degree in Mathematics (with distinction) from the University of Michigan, where he also earned his MS and PhD degrees in Computer and Communication Sciences.

Richard Sutton is a Professor in Computing Science at the University of Alberta, a Research Scientist at Keen Technologies (an artificial general intelligence company based in Dallas, Texas) and Chief Scientific Advisor of the Alberta Machine Intelligence Institute (Amii). Sutton was a Distinguished Research Scientist at Deep Mind from 2017 to 2023. Prior to joining the University of Alberta, he served as a Principal Technical Staff Member in the Artificial Intelligence Department at the AT&T Shannon Laboratory in Florham Park, New Jersey, from 1998 to 2002. Sutton received his BA in Psychology from Stanford University and earned his MS and PhD degrees in Computer and Information Science from the University of Massachusetts at Amherst.

The two researchers began collaborating in 1978, at the University of Massachusetts at Amherst, where Barto was Sutton’s PhD and postdoctoral advisor.

Find out more



tags:


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Interview with Mahammed Kamruzzaman: Understanding and mitigating biases in large language models

  17 Jun 2025
Find out how Mahammed is investigating multiple facets of biases in LLMs.

Google’s SynthID is the latest tool for catching AI-made content. What is AI ‘watermarking’ and does it work?

  16 Jun 2025
Last month, Google announced SynthID Detector, a new tool to detect AI-generated content.

The Good Robot podcast: Symbiosis from bacteria to AI with N. Katherine Hayles

  13 Jun 2025
In this episode, Eleanor and Kerry talk to N. Katherine Hayles about her new book, and discuss how the biological concept of symbiosis can inform the relationships we have with AI.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

  12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Graphic novel explains the environmental impact of AI

  11 Jun 2025
EPFL’s Center for Learning Sciences has released Utop’IA, an educational graphic novel that explores the environmental impact of artificial intelligence.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Congratulations to the #IJCAI2025 award winners

  09 Jun 2025
The winners of three prestigious IJCAI awards for 2025 have been announced.

Machine learning powers new approach to detecting soil contaminants

  06 Jun 2025
Method spots pollutants without experimental reference samples.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence