ΑΙhub.org
 

Interview with Amar Halilovic: Explainable AI for robotics


by
10 June 2025



share this:

In this interview series, we’re meeting some of the AAAI/SIGAI Doctoral Consortium participants to find out more about their research. The Doctoral Consortium provides an opportunity for a group of PhD students to discuss and explore their research interests and career objectives in an interdisciplinary workshop together with a panel of established researchers. In this latest interview, we hear from Amar Halilovic, a PhD student at Ulm University.

Tell us a bit about your PhD – where are you studying, and what is the topic of your research?

I’m currently a PhD student at Ulm University in Germany, where I focus on explainable AI for robotics. My research investigates how robots can generate explanations of their actions in a way that aligns with human preferences and expectations, particularly in navigation tasks.

Could you give us an overview of the research you’ve carried out so far during your PhD?

So far, I’ve developed a framework for environmental explanations of robot actions and decisions, especially when things go wrong. I have explored black-box and generative approaches for the generation of textual and visual explanations. Furthermore, I have been working on planning of different explanation attributes, such as timing, representation, duration, etc. Lately, I’ve been working on methods for dynamically selecting the best explanation strategy depending on the context and user preferences.

Is there an aspect of your research that has been particularly interesting?

Yes, I find it fascinating how people interpret robot behavior differently depending on the urgency or failure context. It’s been especially rewarding to study how explanation expectations shift in different situations and how we can tailor explanation timing and content accordingly.

What are your plans for building on your research so far during the PhD – what aspects will you be investigating next?

Next, I’ll be extending the framework to incorporate real-time adaptation, enabling robots to learn from user feedback and adjust their explanations on the fly. I’m also planning more user studies to validate the effectiveness of these explanations in real-world human-robot interaction settings.

Amar with his poster at the AAAI/SIGAI Doctoral Consortium at AAAI 2025.

What made you want to study AI, and, in particular, explainable robot navigation?

I’ve always been interested in the intersection of humans and machines. During my studies, I realized that making AI systems understandable isn’t just a technical challenge—it’s key to trust and usability. Robot navigation struck me as a particularly compelling area because decisions are spatial and visual, making explanations both challenging and impactful.

What advice would you give to someone thinking of doing a PhD in the field?

Pick a topic that genuinely excites you—you’ll be living with it for several years! Also, build a support network of mentors and peers. It’s easy to get lost in the technical work, but collaboration and feedback are vital.

Could you tell us an interesting (non-AI related) fact about you?

I have lived and studied in four different countries.

About Amar

Amar is a PhD student at the Institute of Artificial Intelligence of Ulm University in Germany. His research focuses on Explainable Artificial Intelligence (XAI) in Human-Robot Interaction (HRI), particularly how robots can generate context-sensitive explanations for navigation decisions. He combines symbolic planning and machine learning to build explainable robot systems that adapt to human preferences and different contexts. Before starting his PhD, he studied Electrical Engineering at the University of Sarajevo in Sarajevo, Bosnia and Herzegovina, and Computer Science at Mälardalen University in Västerås, Sweden. Outside academia, Amar enjoys travelling, photography, and exploring connections between technology and society.



tags: , , ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Congratulations to the #IJCAI2025 award winners

  09 Jun 2025
The winners of three prestigious IJCAI awards for 2025 have been announced.

Machine learning powers new approach to detecting soil contaminants

  06 Jun 2025
Method spots pollutants without experimental reference samples.

What is AI slop? Why you are seeing more fake photos and videos in your social media feed

  05 Jun 2025
AI-generated low-quality news sites are popping up all over the place, and AI images are also flooding social media platforms

The Machine Ethics podcast – DeepDive: AI and the environment

In the 100th episode of the podcast, Ben talks to four experts in the field.

Interview with Debalina Padariya: Privacy-preserving generative models

  03 Jun 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Forthcoming machine learning and AI seminars: June 2025 edition

  02 Jun 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 2 June and 31 July 2025.
monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence