ΑΙhub.org
 

A behaviour monitoring dataset of wild mammals in the Swiss Alps


by
17 July 2025



share this:

Two roe deer foraging, with manual annotations for each individual animal. Credit: A. Mathis (EPFL).

By Nik Papageorgiou

Have you ever wondered how wild animals behave when no one’s watching? Understanding these behaviors is vital for protecting ecosystems—especially as climate change and human expansion alter natural habitats. But collecting this kind of information without interfering has always been tricky.

Traditionally, researchers relied on direct observation or sensors strapped to animals—methods that are either disruptive or limited in scope. Camera traps offer a less invasive alternative, but they generate vast amounts of footage that’s hard to analyze.

AI could help, but there’s a catch: it needs annotated datasets to learn from. Most current video datasets are either scraped from the internet, missing the authenticity of real wild settings, or are small-scale field recordings lacking detail. And few include the kind of rich context—like multiple camera angles or audio—that’s needed to truly understand complex animal behavior.

Introducing MammAlps

To address this challenge, scientists at EPFL have collected and curated MammAlps, the first richly annotated, multi-view, multimodal wildlife behavior dataset in collaboration with the Swiss National Park. MammAlps is designed to train AI models for species and behavior recognition tasks, and ultimately to help researchers understand animal behavior better. This work could make conservation efforts faster, cheaper, and smarter.

MammAlps was developed by Valentin Gabeff, a PhD student at EPFL under the supervision of Professors Alexander Mathis and Devis Tuia, together with their respective research teams.

How MammAlps was developed

The researchers set up nine camera traps that recorded more than 43 hours of raw footage over the course of several weeks. The team then meticulously processed it, using AI tools to detect and track individual animals, resulting in 8.5 hours of material showing wildlife interaction.

They labeled behaviors using a hierarchical approach, categorizing each moment at two levels: high-level activities like foraging or playing, and finer actions like walking, grooming, or sniffing. This structure allows AI models to interpret behaviors more accurately by linking detailed movements to broader behavioral patterns.

To provide AI models with richer context, the team supplemented video with audio recordings and captured “reference scene maps” that documented environmental factors like water sources, bushes, and rocks. This addition al data enables better interpretation of habitat-specific behaviors. They also cross-referenced weather conditions and counts of individuals per event to create more complete scene descriptions.

“By incorporating other modalities alongside video, we’ve shown that AI models can better identify animal behavior,” explains Alexander Mathis. “This multi-modal approach gives us a more complete picture of wildlife behavior.”

A new standard to wildlife monitoring

MammAlps brings a new standard to wildlife monitoring: a full sensory snapshot of animal behavior across multiple angles, sounds, and contexts. It also introduces a “long-term event understanding” benchmark, meaning scientists can now study not just isolated behaviors from short clips, but broader ecological scenes over time—like a wolf stalking a deer across several camera views.

Research is still ongoing. The team is currently processing data collected in 2024 and carries out more fieldwork in 2025. These additional surveys are necessary to expand the set of recordings for rare species such as alpine hares and lynx and are also useful to develop methods for the temporal analysis of wildlife behavior over multiple seasons.

Building more datasets like MammAlps could radically scale up current wildlife monitoring efforts by enabling AI models to identify behaviors of interest from hundreds of hours of video. This would provide wildlife conservationists with timely, actionable insights. Over time, this could make it easier to track how climate change, human encroachment, or disease outbreaks impact wildlife behavior, and help protect vulnerable species.

For more information about MammAlps and access to the dataset, visit the project webpage.

Read the work in full

MammAlps: A multi-view video behavior monitoring dataset of wild mammals in the Swiss Alps, Valentin Gabeff, Haozhe Qi, Brendan Flaherty, Gencer Sumbül, Alexander Mathis, Devis Tuia.



tags: ,


EPFL




            AIhub is supported by:



Related posts :



monthly digest

AIhub monthly digest: August 2025 – causality and generative modelling, responsible multimodal AI, and IJCAI in Montréal and Guangzhou

  29 Aug 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Benyamin Tabarsi: Computing education and generative AI

  28 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

The value of prediction in identifying the worst-off: Interview with Unai Fischer Abaigar

  27 Aug 2025
We hear from the winner of an outstanding paper award at ICML2025.

#IJCAI2025 social media round-up: part two

  26 Aug 2025
Find out what the participants got up to during the main part of the conference.

AI helps chemists develop tougher plastics

  25 Aug 2025
Researchers created polymers that are more resistant to tearing by incorporating stress-responsive molecules identified by a machine learning model.

RoboCup@Work League: Interview with Christoph Steup

  22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

  21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

Congratulations to the #IJCAI2025 distinguished paper award winners

  20 Aug 2025
Find out who has won the prestigious awards at the International Joint Conference on Artificial Intelligence.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence