ΑΙhub.org
 

How AI is opening the playbook on sports analytics


by
18 September 2025



share this:

Professional sports teams pour millions of dollars into data analytics, using advanced tracking systems to study every sprint, pass, and decision on the field. The results of that analysis, however, are industry secrets, making many sports difficult for researchers to study.

Now, two University of Waterloo researchers, Dr. David Radke and Kyle Tilbury, are using AI to level the playing field.

By tapping into Google Research Football’s reinforcement learning environment, the researchers developed a system that can simulate and record unlimited soccer matches. To get things started, they generated and saved data from 3,000 simulated soccer games, resulting in a rich and complex dataset of passes, goals, and player movements for researchers to study.

“While researchers have access to a lot of data about episodic sports like baseball, continuous invasion-game sports like soccer and hockey are much more difficult to analyze,” said Radke, a recent Waterloo PhD graduate in computer science and currently a senior research scientist for the NHL’s Chicago Blackhawks.

“While the AI-generated players might not exactly play like Lionel Messi, the simulated datasets they generate are still useful for developing sports analysis tools.”

Datasets like the ones generated by the team are particularly useful for researchers, enthusiastic fans, and smaller research teams that may not have extensive access to proprietary sports data.

“Enabling researchers to have this data will open up all kinds of opportunities,” said Tilbury, a Waterloo PhD student in computer science who equally co-authored the research. “It’s a democratization of access to this kind of sports analytics data.”

While datasets like the one generated by the team are particularly interesting for sports enthusiasts, they have larger implications for AI research as well.

“At its core, invasion-game sports analytics is about understanding complex multiagent systems,” Radke said. “The better we are at modelling the complexity of human behaviour in a sporting situation, the more useful that is for AI research. In turn, more advanced multiagent systems will help us better understand invasion-game sports.”

Radke and the team believe the future of sports analytics relies on progress in the space of tracking data. They therefore hope researchers interested in sports without access to tracking data will utilize their datasets and repository to gain experience working with this type of data.

The study, Simulating tracking data to advance sports analytics research, appeared in the proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems.



tags:


University of Waterloo




            AIhub is supported by:



Related posts :



monthly digest

AIhub monthly digest: October 2025 – energy supply challenges, wearable sensors, and atomic-scale simulations

  29 Oct 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Winners of the #ECAI2025 outstanding paper awards announced

  28 Oct 2025
Find out which articless were selected as ECAI and PAIS outstanding papers.

The great wildebeest migration, seen from space: satellites and AI are helping count Africa’s wildlife

  27 Oct 2025
Researchers analysed satellite imagery of the Serengeti-Mara ecosystem from 2022 and 2023.

New AI tool helps match enzymes to substrates

  24 Oct 2025
A new machine learning-powered tool can help researchers determine how well an enzyme fits with a desired target.

#AIES2025 social media round-up

  24 Oct 2025
Find out what participants got up to at the Conference on Artificial Intelligence, Ethics, and Society.

Looking ahead to #ECAI2025

  23 Oct 2025
Find out what the programme has in store at the European Conference on AI.

Congratulations to the #AIES2025 best paper award winners!

  21 Oct 2025
The four winners of best paper prizes were announced during the opening ceremony at AIES.

From the telegraph to AI, our communications systems have always had hidden environmental costs

  20 Oct 2025
Drawing parallels between new technologies of the past and today.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence