ΑΙhub.org
 

How AI is opening the playbook on sports analytics


by
18 September 2025



share this:

Professional sports teams pour millions of dollars into data analytics, using advanced tracking systems to study every sprint, pass, and decision on the field. The results of that analysis, however, are industry secrets, making many sports difficult for researchers to study.

Now, two University of Waterloo researchers, Dr. David Radke and Kyle Tilbury, are using AI to level the playing field.

By tapping into Google Research Football’s reinforcement learning environment, the researchers developed a system that can simulate and record unlimited soccer matches. To get things started, they generated and saved data from 3,000 simulated soccer games, resulting in a rich and complex dataset of passes, goals, and player movements for researchers to study.

“While researchers have access to a lot of data about episodic sports like baseball, continuous invasion-game sports like soccer and hockey are much more difficult to analyze,” said Radke, a recent Waterloo PhD graduate in computer science and currently a senior research scientist for the NHL’s Chicago Blackhawks.

“While the AI-generated players might not exactly play like Lionel Messi, the simulated datasets they generate are still useful for developing sports analysis tools.”

Datasets like the ones generated by the team are particularly useful for researchers, enthusiastic fans, and smaller research teams that may not have extensive access to proprietary sports data.

“Enabling researchers to have this data will open up all kinds of opportunities,” said Tilbury, a Waterloo PhD student in computer science who equally co-authored the research. “It’s a democratization of access to this kind of sports analytics data.”

While datasets like the one generated by the team are particularly interesting for sports enthusiasts, they have larger implications for AI research as well.

“At its core, invasion-game sports analytics is about understanding complex multiagent systems,” Radke said. “The better we are at modelling the complexity of human behaviour in a sporting situation, the more useful that is for AI research. In turn, more advanced multiagent systems will help us better understand invasion-game sports.”

Radke and the team believe the future of sports analytics relies on progress in the space of tracking data. They therefore hope researchers interested in sports without access to tracking data will utilize their datasets and repository to gain experience working with this type of data.

The study, Simulating tracking data to advance sports analytics research, appeared in the proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems.



tags:


University of Waterloo




            AIhub is supported by:



Related posts :

Interview with Kate Larson: Talking multi-agent systems and collective decision-making

  27 Jan 2026
AIhub ambassador Liliane-Caroline Demers caught up with Kate Larson at IJCAI 2025 to find out more about her research.

#AAAI2026 social media round up: part 1

  23 Jan 2026
Find out what participants have been getting up to during the first few of days at the conference

Congratulations to the #AAAI2026 outstanding paper award winners

  22 Jan 2026
Find out who has won these prestigious awards at AAAI this year.

3 Questions: How AI could optimize the power grid

  21 Jan 2026
While the growing energy demands of AI are worrying, some techniques can also help make power grids cleaner and more efficient.

Interview with Xiang Fang: Multi-modal learning and embodied intelligence

  20 Jan 2026
In the first of our new series of interviews featuring the AAAI Doctoral Consortium participants, we hear from Xiang Fang.

An introduction to science communication at #AAAI2026

  19 Jan 2026
Find out more about our session on Wednesday 21 January.

Guarding Europe’s hidden lifelines: how AI could protect subsea infrastructure

  15 Jan 2026
EU-funded researchers are developing AI-powered surveillance tools to protect the vast network of subsea cables and pipelines that keep the continent’s energy and data flowing.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence