ΑΙhub.org
 

AI and human autonomy: an analysis of the interaction between intelligent software agents and human users


by
24 January 2020



share this:

Is our autonomy affected by interacting with intelligent machines designed to persuade us? That’s what researchers at the University of Bristol attempted to find out through an analysis of the interaction between intelligent software agents and human users.

Interactions between an intelligent software agent (ISA) and a human user are ubiquitous in everyday situations such as access to information, entertainment, and purchases. In such interactions, the ISA mediates the user’s access to the content, or controls some other aspect of the user experience, and is not designed to be neutral about outcomes of user choices. Like human users, ISAs are driven by goals, make autonomous decisions, and can learn from experience.

A typical ISA, such as a recommender system, might have to select a set of videos for a user to watch (out of a vast catalogue), using any available information or signal it has about the given user (e.g. location, time, past usage, explicit ratings, and much more). In this case, the ISA’s goal is to select an action that, for the given user, maximises the expected click-through rate: an expression of the probability of users clicking through links.

Using ideas from bounded rationality (and deploying concepts from artificial intelligence, behavioural economics, control theory, and game theory), the team frame these interactions as instances of an ISA whose reward depends on actions performed by the user.

The team present a model of an autonomous agent that allows them to distinguish various types of control that actual ISAs can exert on users. The framework of this model allows different types of interaction (i.e. trading, nudging, coercion and deception) to be separated, and presents a unified narrative for discussion of polarisation, addiction, value alignment, autonomy, misuse of proxies for relevance feedback, and moral accountability, as well as other important ethical, psychological and social issues that arise from second-order effects.

This framework is proposed as a resource to better enable philosophers and scientists, policy-makers, and other interested parties, to engage with these issues with a shared conceptual basis. The research highlights the importance of framing the interactions between human users and ISAs as potentially generating positive feedback loops. The nature of the feedback commonly used by learning agents to update their models and subsequent decisions could steer the behaviour of human users away from what benefits them, and in a direction that can undermine autonomy and cause further disparity between actions and goals as exemplified by addictive and compulsive behaviour. ISAs could sometimes exploit and reinforce weaknesses in human beings. It may be possible to mitigate this by using negative feedback, but first, and in any case, the ethical concerns raised in this work must be faced.

Read the full research article:
An Analysis of the Interaction Between Intelligent Software Agents and Human Users Burr, C., Cristianini, N. & Ladyman, J. Minds & Machines (2018).

This work is part of the ERC ThinkBIG project, Principal Investigator Nello Cristianini, University of Bristol.




Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol.
Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol.




            AIhub is supported by:



Related posts :



What is AI poisoning? A computer scientist explains

  24 Nov 2025
Poisoning is a growing problem in the world of AI – in particular, for large language models.

New AI technique sounding out audio deepfakes

  21 Nov 2025
Researchers discover a smarter way to detect audio deepfakes that is more accurate and adaptable to keep pace with evolving threats.

Learning robust controllers that work across many partially observable environments

  20 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Interview with Mario Mirabile: trust in multi-agent systems

  18 Nov 2025
We meet ECAI Doctoral Consortium participant, Mario, to find out more about his research.

Review of “Exploring metaphors of AI: visualisations, narratives and perception”

and   17 Nov 2025
A curated research session at the Hype Studies Conference, “(Don’t) Believe the Hype?!” 10-12 September 2025, Barcelona.

Designing value-aligned autonomous vehicles: from moral dilemmas to conflict-sensitive design

  13 Nov 2025
Autonomous systems increasingly face value-laden choices. This blog post introduces the idea of designing “conflict-sensitive” autonomous traffic agents that explicitly recognise, reason about, and act upon competing ethical, legal, and social values.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence