ΑΙhub.org
 

Using AI to help process earth observation data


by
14 November 2022



share this:
earth

From satellite images, to measurements of temperature and pressure, scientists collect a lot of information from earth observation. AI methods can help them to analyse this data faster. Julia Wasala, a PhD student at the Leiden Institute of Advanced Computer Science (LIACS), is passionate about the environment and wants to help scientists save time when analysing data: “By using AI and especially machine learning, processing data for earth observation is easier.”

How can AI help scientists?

In my research, I apply machine learning systems to Earth observation (EO) datasets. This makes commonly used AI models more accessible for EO scientists. Besides this, it saves a researcher precious time by automatically designing models based on what EO data will be analysed. A big plus of using machine learning is that it has a much higher performance than a human, who would have to find good models through trial and error.

How did you get involved in this topic?

I am very passionate about our environment, and from my background in astronomy I have a familiarity with and love for working with images. I wrote my master’s thesis on the same topic and I greatly enjoyed that. I feel there is still a lot to gain in this field, and that gaining new insights can have an impact on climate research.

How can AI help climate research?

The methods I am developing are targeted at scientists that work with EO data, where we have more data than what we can process manually. By using AI, and especially machine learning, processing data is easier. For example, if you measure methane emissions on a satellite, you measure how much methane is in the atmosphere, and you want to know how much is emitted at the Earth’s surface. There are physics models for calculating this, but they have some uncertainty. By using AI models to process and compare data, it’s possible to reduce that uncertainty. This means you have a greater understanding of the relationship between methane in the air and methane emissions. The understanding of these kind of mechanisms can help identify factors that have a major impact on climate.

So a deeper understanding of environmental mechanisms makes it easier to combat climate change?

Yes, but it is not only that. Other AI models, such as a model that can automatically detect large emitters, can also support policy makers in their decisions. For example, if it turns out that many coal mines that are no longer used are still causing a lot of emissions, policies can be put in place to tackle this. My ultimate research goal is that machine learning can be used to improve the entire process of EO analysis, so people can make better use of all EO data available.

About Julia

Julia Wasala

Julia Wasala is PhD Student in the ADA research group. Prior to this, she obtained a bachelor’s degree in astronomy and a master’s degree in computer science, both at Leiden University.

The ADA research group was founded in 2017. It pursues the development of AI techniques that complement, rather than replace, human intelligence. You can follow the project on Twitter: @AutoAI4EO. You can read more about Julia’s research on the ADA blog. There, she is writing a series of blog posts on Machine Learning for Earth observation.




Universiteit Leiden




            AIhub is supported by:



Related posts :



We risk a deluge of AI-written ‘science’ pushing corporate interests – here’s what to do about it

  16 Sep 2025
A single individual using AI can produce multiple papers that appear valid in a matter of hours.

Deploying agentic AI: what worked, what broke, and what we learned

  15 Sep 2025
AI scientist and researcher Francis Osei investigates what happens when Agentic AI systems are used in real projects, where trust and reproducibility are not optional.

Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.

The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence