ΑΙhub.org
 

Radical AI podcast: the limitations of ChatGPT with Emily M. Bender and Casey Fiesler

by
09 March 2023



share this:
Photos of Emily and Casey with text The Limitations of ChatGPT

Hosted by Dylan Doyle-Burke and Jessie J Smith, Radical AI is a podcast featuring the voices of the future in the field of artificial intelligence ethics. In this episode, Dylan and Jess unpack the limitations of ChatGPT with Emily M. Bender and Casey Fiesler.

Listen to the episode below:


The limitations of ChatGPT

In this episode, we unpack the limitations of ChatGPT. We interview Dr Emily M. Bender and Dr Casey Fiesler about the ethical considerations of ChatGPT, bias and discrimination, and the importance of algorithmic literacy in the face of chatbots.

Emily M. Bender is a Professor of Linguistics and an Adjunct Professor in the School of Computer Science and the Information School at the University of Washington, where she has been on the faculty since 2003. Her research interests include multilingual grammar engineering, computational semantics, and the societal impacts of language technology. Emily was also recently nominated as a Fellow of the American Association for the Advancement of Science (AAAS).

Casey Fiesler is an associate professor in Information Science at University of Colorado Boulder. She researches and teaches in the areas of technology ethics, internet law and policy, and online communities. Also a public scholar, she is a frequent commentator and speaker on topics of technology ethics and policy, and her research has been covered everywhere from The New York Times to Teen Vogue.

Follow Emily on Twitter @emilymbender or emilymbender@dair-community.social on Mastodon.

Follow Casey on Twitter @cfiesler or cfiesler@hci.social on Mastodon or @professorcasey on TikTok.

If you enjoyed this episode please make sure to subscribe, submit a rating and review, and connect with us on twitter at @radicalaipod.

About Radical AI:

Hosted by Dylan Doyle-Burke, a PhD student at the University of Denver, and Jessie J Smith, a PhD student at the University of Colorado Boulder, Radical AI is a podcast featuring the voices of the future in the field of Artificial Intelligence Ethics.

Radical AI lifts up people, ideas, and stories that represent the cutting edge in AI, philosophy, and machine learning. In a world where platforms far too often feature the status quo and the usual suspects, Radical AI is a breath of fresh air whose mission is “To create an engaging, professional, educational and accessible platform centering marginalized or otherwise radical voices in industry and the academy for dialogue, collaboration, and debate to co-create the field of Artificial Intelligence Ethics.”

Through interviews with rising stars and experts in the field we boldly engage with the topics that are transforming our world like bias, discrimination, identity, accessibility, privacy, and issues of morality.

To find more information regarding the project, including podcast episode transcripts and show notes, please visit Radical AI.




The Radical AI Podcast




            AIhub is supported by:


Related posts :



The Turing Lectures: Can we trust AI? – with Abeba Birhane

Abeba covers biases in data, the downstream impact on AI systems and our daily lives, how researchers are tackling the problem, and more.
21 November 2024, by

Dynamic faceted search: from haystack to highlight

The authors develop and compare three distinct methods for dynamic facet generation (DFG).
20 November 2024, by , and

Identification of hazardous areas for priority landmine clearance: AI for humanitarian mine action

In close collaboration with the UN and local NGOs, we co-develop an interpretable predictive tool to identify hazardous clusters of landmines.
19 November 2024, by

On the Road to Gundag(AI): Ensuring rural communities benefit from the AI revolution

We need to help regional small businesses benefit from AI while avoiding the harmful aspects.
18 November 2024, by

Making it easier to verify an AI model’s responses

By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
15 November 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association