ΑΙhub.org
 

Dynamic faceted search: from haystack to highlight


by , and
20 November 2024



share this:

In the digital age, the amount of scholarly articles is growing exponentially. In the Open Research Knowledge Graph’s question-answering facility ASK, for example, more than 80 million research articles have already been indexed. Finding the most relevant information from vast collections of scholarly data can be daunting for researchers, students, and academics. To tackle this challenge, search engines and digital libraries often rely on advanced search techniques, one of the most effective being faceted search.

Faceted search is an advanced search method that allows users to filter and refine search results based on multiple predefined attributes, known as facets. Each facet represents a specific category or attribute of the data, such as the publication year, author, subject area, journal name, or keywords. While faceted search offers significant advantages, traditional faceted search models can still face limitations when applied to large, diverse academic datasets. Often, these models offer static facets that are predefined and do not adapt based on user interactions or the nature of the data being explored. This can lead to an overwhelming or ineffective user experience, especially in environments with vast and rapidly changing datasets like digital libraries and academic search engines.

Image 1: Static Faceted Search in Google Scholar.

This is where dynamic facet generation comes into play. The key innovation behind dynamic facet generation is the ability to adapt and adjust facets in real-time, based on user input and the evolving nature of the dataset. This approach not only makes the search process more flexible and personalized, but also enables a much more efficient and intuitive way to discover relevant academic content.

Our contribution

We developed, proposed, and compared three distinct methods for Dynamic Facet Generation (DFG), each with its unique approach. These methods, depicted in Image 2, include a symbolic approach and two neuro-symbolic approaches that integrate large language models (LLMs) and knowledge bases.

  1. KB2 (based on Knowledge Bases): KB2 is a symbolic approach that leverages Wikipedia-based knowledge bases to enable dynamic facet generation. In this method, the knowledge base provides structured information that helps in generating facets relevant to the academic content.
  2. KBLLM (based on a Knowledge Base and a Large Language Model): KBLLM represents a neuro-symbolic approach, combining knowledge bases with the predictive and language-understanding capabilities of an LLM. By blending the structured knowledge of a database with the flexibility of a language model, KBLLM generates facets that are more adaptive to user queries, offering a nuanced, context-aware refinement of search results.
  3. KBLLMKA (based on a Knowledge Base and a Large Language Model with Knowledge Augmentation): KBLLMKA is an enhanced version of KBLLM that integrates knowledge augmentation to further improve the LLM’s facet predictions. This augmentation provides additional context and relationships from the knowledge base, thereby refining the LLM’s understanding and facet-generation capabilities.

Image 2: Overview diagram illustrating our methodology and the three distinct approaches KB2, KBLLM, and KBLLMKA.

Evaluation

To evaluate the effectiveness of the three proposed Dynamic Facet Generation (DFG) methods—KB2, KBLLM, and KBLLMKA—we tested them on 26 distinct sets of research articles from a variety of academic fields (‘Arts and Humanities’, ‘Engineering’, ‘Life Sciences’, ‘Physical Sciences & Mathematics’, and ‘Social and Behavioral Sciences’). Each set contained an average of 9 papers. This diverse selection allowed us to assess each method’s adaptability and accuracy across a wide range of research domains. Our evaluation combined two key metrics: user ratings from a survey-based assessment and average time taken for dynamic facet generation. KBLLM takes the lead as it achieved 7.2/10 rating, with an average time of 7.9 seconds for DFG, enhancing the overall user experience by providing quick, responsive filtering.

Image 3: Top-n facets generated using KB2, KBLLM, and KBLLMKA facet generation methods for literature on ‘Academic bullying evidence’.

Benefits for Academic Search Engines

Implementing the KBLLM approach to Dynamic Facet Generation (DFG) offers significant benefits for digital libraries. With KBLLM’s ability to dynamically generate and adapt facets in response to user inputs, digital libraries can provide a much more intuitive and efficient search experience for researchers, students, and academics. By integrating the flexibility of a large language model with structured knowledge from established databases, KBLLM creates contextually relevant and adaptive filters that guide users through complex datasets. This makes it easier for users to quickly identify relevant publications, refine search queries, and explore related areas within large collections of research material. Currently, we are integrating the approach into the Open Research Knowledge Graph’s ASK question answering service, allowing users to ask research questions against roughly 80 million academic articles.

Acknowledgements

This work was co-funded by the European Research Council for the project ScienceGRAPH (Grant agreement ID: 819536) as well as the NFDI4Ing project funded by the German Research Foundation (project number 442146713) and NFDI4DataScience (project number 460234259).


This work was accepted at the 27th European Conference on Artificial Intelligence (ECAI 2024).



tags: ,


Mutahira Khalid is a Research Assistant at the Knowledge Infrastructures Lab at TIB – Leibniz Information Centre for Science and Technology
Mutahira Khalid is a Research Assistant at the Knowledge Infrastructures Lab at TIB – Leibniz Information Centre for Science and Technology

Sören Auer is Professor of Data Science and Digital Libraries at Leibniz Universität Hannover and Director of the TIB
Sören Auer is Professor of Data Science and Digital Libraries at Leibniz Universität Hannover and Director of the TIB

Markus Stocker leads the Lab Knowledge Infrastructures at the TIB - Leibniz Information Centre for Science and Technology
Markus Stocker leads the Lab Knowledge Infrastructures at the TIB - Leibniz Information Centre for Science and Technology




            AIhub is supported by:



Related posts :



monthly digest

AIhub monthly digest: September 2025 – conference reviewing, soccer ball detection, and memory traces

  30 Sep 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Botanical time machines: AI is unlocking a treasure trove of data held in herbarium collections

  29 Sep 2025
New research describes the development and testing of a new AI-driven tool.

All creatures, great, small, and artificial

  26 Sep 2025
AI in Veterinary Medicine and what it can teach us about the data revolution.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

  25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Data centers consume massive amounts of water – companies rarely tell the public exactly how much

  24 Sep 2025
Why do data centres need so much water, and how much do they use?

Interview with Luc De Raedt: talking probabilistic logic, neurosymbolic AI, and explainability

  23 Sep 2025
AIhub ambassador Liliane-Caroline Demers caught up with Luc de Raedt at IJCAI 2025 to find out more about his research.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.

Self-supervised learning for soccer ball detection and beyond: interview with winners of the RoboCup 2025 best paper award

  19 Sep 2025
Method for improving ball detection can also be applied in other fields, such as precision farming.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence