ΑΙhub.org
 

#AAAI2025 workshops round-up 1: Artificial intelligence for music, and towards a knowledge-grounded scientific research lifecycle


by
18 March 2025



share this:

Top: Group shot from the workshop “Artificial Intelligence for Music”. Bottom: Two best paper award winners at the workshop: “AI4Research: Towards a Knowledge-grounded Scientific Research Lifecycle”.

In a series of articles, we’ll be publishing summaries with some of the key takeaways from a few of workshops held at the 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025). In this first round-up, we hear from the organisers of the workshops on:

  • AI4Research: Towards a Knowledge-grounded Scientific Research Lifecycle
  • Artificial Intelligence for Music

AI4Research: Towards a Knowledge-grounded Scientific Research Lifecycle
By Qingyun Wang

Organisers: Qingyun Wang, Wenpeng Yin, Lifu Huang, May Fung, Xinya Du, Carl Edwards, Tom Hope

This workshop focused on grounding AI methods in existing scientific publications and experimental datasets to discover potential “Sleeping Beauties”.

The three main takeaways from the event were:

  • The workshop featured 20 accepted papers across diverse application areas, including five oral presentations and 15 posters. Research topics ranged from agent debate evaluation and taxonomy expansion to hypothesis generation, AI4Research benchmarks, caption generation, drug discovery, and financial auditing. Additionally, the workshop hosted a dedicated mentoring session for early-career researchers.
  • The workshop had six inspiring invited talks from academic and industry experts covering a wide range of research topics. Professor Wei Wang (UCLA) presented work on multimodal scientific foundation models for knowledge extraction and synthesis. Next, Professor Marinka Zitnik (Harvard & Broad Institute) shared their recent progress in “AI Scientists” to apply diffusion models and large language models for biomedical discovery. Professor Doug Downey (AI2 & Northwestern) presented state-of-the-art ScholarQA from AI2, a literature-based long-form question-answering assistant, and highlighted possible future directions. Professor Aviad Levis (University of Toronto) introduced physics-constrained neural fields for 3D imaging in astronomy. Professor Jinho Choi (Emory) gave a talk about AI-assisted scientific writing and explored potential solutions to the growing peer-review crisis in academic publishing. Finally, Dr Cong Lu (DeepMind) described their work about fully autonomous open-ended scientific discovery in the machine learning domain.
  • Professor Doug Downey, Professor Aviad Levis, Professor Jinho Choi, and Dr Cong Lu gave an insightful panel discussion on emerging methods, challenges, and ethical considerations in AI4research, including a discussion about the potential social impact of replacing incremental research with automatic AI systems. The panelists also discussed the potential copyright issues for using LLM tools to help researchers discover new hypotheses, solutions to existing peer review crises, and the exponential growth of papers in the machine learning domain.

Artificial Intelligence for Music
By Yung-Hsiang Lu

Organisers: Yung-Hsiang Lu, Kristen Yeon-Ji Yun, George K. Thiruvathukal, Benjamin Shiue-Hal Chou

This workshop explored the dynamic intersection of artificial intelligence and music. It covered topics including the impact of AI on music education and careers of musicians, AI-driven music composition, AI-assisted sound design, AI-generated audio and video, and legal and ethical considerations of AI in music.

The three main takeaways from the event were:

  • Artificial Intelligence technologies should be designed for users. Technologists should collaborate with musicians and understand users’ needs.
  • AI technologies can provide many benefits to musicians and music students, for example, composition, error detection, adaptive accompaniment, transcription, generating video from music, generating music from video.
  • Major barriers to further improvements include (1) lack of training data, (2) lack of widely accepted metrics for evaluation, (3) difficulty to find experts in both technologies and music.


tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Competition open for images of “digital transformation at work”

Digit and Better Images of AI have teamed up to launch a competition to create more realistic stock images of "digital transformation at work"
monthly digest

AIhub monthly digest: April 2025 – aligning GenAI with technical standards, ML applied to semiconductor manufacturing, and social choice problems

  30 Apr 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

#ICLR2025 social media round-up

  29 Apr 2025
Find out what participants got up to at the International Conference on Learning Representations.

Copilot Arena: A platform for code

  28 Apr 2025
Copilot Arena is an app designed to evaluate LLMs in real-world settings by collecting preferences directly in a developer’s actual workflow.

Dataset reveals how Reddit communities are adapting to AI

  25 Apr 2025
Researchers at Cornell Tech have released a dataset extracted from more than 300,000 public Reddit communities.

Interview with Eden Hartman: Investigating social choice problems

  24 Apr 2025
Find out more about research presented at AAAI 2025.

The Machine Ethics podcast: Co-design with Pinar Guvenc

This episode, Ben chats to Pinar Guvenc about co-design, whether AI ready for society and society is ready for AI, what design is, co-creation with AI as a stakeholder, bias in design, small language models, and more.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association