ΑΙhub.org
 

fast.ai release new courses and more


by
04 September 2020



share this:
Online course

Have you been thinking about getting up to speed with deep learning or applied data ethics? Well, look no further than the latest free courses from fast.ai.

Fast.ai recently announced some exciting new releases. Here is their full list of available courses:

Practical deep learning for coders

This course covers the following topics:

  • How to train models that achieve state-of-the-art results in computer vision, natural language processing (NLP), tabular data and collaborative filtering.
  • How to turn models into web applications, and deploy them
  • Why and how deep learning models work, and how to use that knowledge to improve the accuracy, speed, and reliability of models
  • The latest deep learning techniques that really matter in practice
  • How to implement stochastic gradient descent and a complete training loop from scratch
  • How to think about the ethical implications of deep learning and its implementation

Part 2: deep learning from the foundations

Part 2 of the deep learning course shows how to build a state of the art deep learning model from scratch. It covers many topics from the foundations of implementing matrix multiplication and back-propagation, through to high performance mixed-precision training, and the latest neural network architectures and learning techniques.

Applied data ethics

This course focusses on ethics issues that are both urgent and practical. It covers the following topics:

  1. Disinformation
  2. Bias & fairness
  3. Ethical foundations & practical tools
  4. Privacy and surveillance
  5. How did we get here? Our ecosystem
  6. Algorithmic colonialism, and next steps

Computational linear algebra

In this course you can learn how to do matrix computations with acceptable speed and acceptable accuracy.

Code-first introduction to natural language processing

This course teaches a blend of traditional NLP topics (including regex, SVD, naive bayes, tokenization) and recent neural network approaches (including RNNs, seq2seq, attention, and the transformer architecture). It also addresses urgent ethical issues, such as bias and disinformation.

In addition to the courses, fast.ai also released four libraries:
fastai v2
fastcore
fastscript
fastgpu

About fast.ai

fast.ai is a self-funded research, software development, and teaching lab, focused on making deep learning more accessible. It was founded by Jeremy Howard and Rachel Thomas in 2016, with Sylvain Gugger completing the core team. They provide free courses, software libraries and research papers (with no ads), and pay all of the costs out of their own pockets. Jeremy and Sylvain have recently published a book entitled: “Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD”.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.

AIhub interview highlights 2025

  22 Dec 2025
Join us for a look back at some of the interviews we've conducted with members of the AI community.

Identifying patterns in insect scents using machine learning

  19 Dec 2025
Scientists will use machine learning to predict what types of molecules interact with insect olfactory receptors.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence