ΑΙhub.org
 

fast.ai release new courses and more


by
04 September 2020



share this:
Online course

Have you been thinking about getting up to speed with deep learning or applied data ethics? Well, look no further than the latest free courses from fast.ai.

Fast.ai recently announced some exciting new releases. Here is their full list of available courses:

Practical deep learning for coders

This course covers the following topics:

  • How to train models that achieve state-of-the-art results in computer vision, natural language processing (NLP), tabular data and collaborative filtering.
  • How to turn models into web applications, and deploy them
  • Why and how deep learning models work, and how to use that knowledge to improve the accuracy, speed, and reliability of models
  • The latest deep learning techniques that really matter in practice
  • How to implement stochastic gradient descent and a complete training loop from scratch
  • How to think about the ethical implications of deep learning and its implementation

Part 2: deep learning from the foundations

Part 2 of the deep learning course shows how to build a state of the art deep learning model from scratch. It covers many topics from the foundations of implementing matrix multiplication and back-propagation, through to high performance mixed-precision training, and the latest neural network architectures and learning techniques.

Applied data ethics

This course focusses on ethics issues that are both urgent and practical. It covers the following topics:

  1. Disinformation
  2. Bias & fairness
  3. Ethical foundations & practical tools
  4. Privacy and surveillance
  5. How did we get here? Our ecosystem
  6. Algorithmic colonialism, and next steps

Computational linear algebra

In this course you can learn how to do matrix computations with acceptable speed and acceptable accuracy.

Code-first introduction to natural language processing

This course teaches a blend of traditional NLP topics (including regex, SVD, naive bayes, tokenization) and recent neural network approaches (including RNNs, seq2seq, attention, and the transformer architecture). It also addresses urgent ethical issues, such as bias and disinformation.

In addition to the courses, fast.ai also released four libraries:
fastai v2
fastcore
fastscript
fastgpu

About fast.ai

fast.ai is a self-funded research, software development, and teaching lab, focused on making deep learning more accessible. It was founded by Jeremy Howard and Rachel Thomas in 2016, with Sylvain Gugger completing the core team. They provide free courses, software libraries and research papers (with no ads), and pay all of the costs out of their own pockets. Jeremy and Sylvain have recently published a book entitled: “Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD”.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



2024 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  20 Dec 2024
We collate our interviews with the 2024 cohort of doctoral consortium participants.

Interview with Andrews Ata Kangah: Localising illegal mining sites using machine learning and geospatial data

  19 Dec 2024
We spoke to Andrews to find out more about his research, and attending the AfriClimate AI workshop at the Deep Learning Indaba.

#NeurIPS social media round-up part 2

  18 Dec 2024
We pick out some highlights from the second half of the conference.

The Good Robot podcast: Machine vision with Jill Walker Rettberg

  17 Dec 2024
Eleanor and Kerry talk to Jill about machine vision's origins in polished volcanic glass, whether or not we'll actually have self-driving cars, and a famous photo-shopped image.

Five ways you might already encounter AI in cities (and not realise it)

  13 Dec 2024
Researchers studied how residents and visitors experience the presence of AI in public spaces in the UK.

#NeurIPS2024 social media round-up part 1

  12 Dec 2024
Find out what participants have been getting up to at the Neural Information Processing Systems conference in Vancouver.

Congratulations to the #NeurIPS2024 award winners

  11 Dec 2024
Find out who has been recognised by the conference awards.

Multi-agent path finding in continuous environments

and   11 Dec 2024
How can a group of agents minimise their journey length whilst avoiding collisions?




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association