ΑΙhub.org
 

#NeurIPS2020 invited talks round-up: part one


by
11 December 2020



share this:
NeurIPS logo

There were seven interesting and varied invited talks at NeurIPS this year. Here, we summarise the first three, which were given by Charles Isbell (Georgia Tech), Jeff Shamma (King Abdullah University of Science and Technology) and Shafi Goldwasser (UC Berkeley, MIT and Weizmann Institute of Science).

Charles Isbell: You can’t escape hyperparameters and latent variables: machine learning as a software engineering enterprise

The invited talks kicked off in style with a presentation from Charles Isbell. He had posted a teaser on Twitter indicating that he was trying something new with the format, and it certainly did not disappoint. The talk received rave reviews during both the live chat channel and afterwards on social media.

Machine learning has reached the point where it is pervasive in our lives and, like other successful technological fields, must take responsibility for avoiding the harms associated with what it is producing.

Charles’ Christmas Carol-themed talk made full use of the virtual format and saw him visit Michael Littmann, who gave a consummate performance in the role of Scrooge (a blinkered machine learning theorist), to discuss algorithmic bias and how researchers can take steps to identify and combat this bias in their work. The ghosts of machine learning’s past, present and future came in the form of interviews with many researchers working across the discipline. Their insights included approaches that might help us to develop more robust machine-learning systems.

summary slide from Isbell talk at NeurIPS
The summary slide from Charles Isbell’s talk

Watch the talk here.


Jeff Shamma: Feedback control perspectives on learning

Jeff started with a definition of feedback control: real-time decision making in dynamic and uncertain environments. Feedback systems are a never-ending loop, with the steps of: sensing what is happening, deciding what to do, and acting. Areas where feedback control has been applied include: manufacturing, energy, biomedical, transportation, logistics, and communication. As feedback control is an enabling technology it does not perhaps receive the attention warranted for such ubiquity.

Feedback control is, of course, present in learning systems. For example, in reinforcement learning, an agent is in feedback with its environment.

During his talk, Jeff presented three benefits of feedback: 1) it can be used to stabilise and shape behaviour, 2) it can provide robustness to variation, 3) it enables tracking of command signals. These concepts were related to specific research problems in evolutionary game theory, no-regret learning, and multi-agent learning.

Summary slide from Shamma talk at NeurIPS
Concluding slide from Jeff Shamma’s talk

Watch the talk here.


Shafi Goldwasser: Robustness, verification, privacy: addressing machine learning adversaries

To start her talk, Shafi noted that her background is in cryptography. This field has had a big impact on the world, from electronic commerce to cryptocurrencies, from cloud computing to quantum computing. Experience in this area has allowed her to approach machine learning problems from a cryptographic standpoint.

Shafi’s talk focussed on three recent works, covering the topics of privacy, verification and robustness. For each case, cryptography inspired models were detailed; an important aim in each instance being to address the challenges presented by adversaries.

The three works presented in the talk were based on these topics:
1) Verifiability of machine learning models
2) Privacy during training: from prototype to large scale data
3) Robustness – accurate predictions when test distribution deviates from training distribution

Shafi Goldwasser talk intro slide
The three studies presented by Shafi Goldwasser in her talk

Watch the talk here.




tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



How the internet and its bots are sabotaging scientific research

  03 Sep 2025
What most people have failed to fully realise is that internet research has brought along risks of data corruption or impersonation.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  02 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Forthcoming machine learning and AI seminars: September 2025 edition

  01 Sep 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2025.
monthly digest

AIhub monthly digest: August 2025 – causality and generative modelling, responsible multimodal AI, and IJCAI in Montréal and Guangzhou

  29 Aug 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Benyamin Tabarsi: Computing education and generative AI

  28 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

The value of prediction in identifying the worst-off: Interview with Unai Fischer Abaigar

  27 Aug 2025
We hear from the winner of an outstanding paper award at ICML2025.

#IJCAI2025 social media round-up: part two

  26 Aug 2025
Find out what the participants got up to during the main part of the conference.

AI helps chemists develop tougher plastics

  25 Aug 2025
Researchers created polymers that are more resistant to tearing by incorporating stress-responsive molecules identified by a machine learning model.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence