ΑΙhub.org
 

How to avoid hype when promoting your AI research


by
25 October 2021



share this:
microphone in front of a crowd

Hype around AI sets inflated expectations about the technology, drives unnecessary fears and detracts from the meaningful discussions that need to happen now, about the technology actually being developed today.

The AIhub trustees have compiled a handy guide to help you avoid hype when communicating your research. Here are their 10 tips:

1. Be specific about the science and achievements

What problem is your research trying to solve? Provide context.

2. Don’t make exaggerated claims

Try to avoid unnecessary superlatives such as: “general, best, first” unless you can provide supporting context.

3. Be clear about the limitations of your experiments

Did your demonstration require external instruments that made the real world “more digital” (for example, external sensors/motion capture)?

4. Explain how things work

What data was used, what type of algorithms, what hardware? Be upfront about the computational cost.

5. Has your research been validated by the community?

Does the community support your findings, through peer-reviewed research or other means?

6. Make your headline catchy but accurate

Prioritise scientific accuracy.

7. Keep any debates scientific

Don’t bring personalities/personal attacks into the debate.

8. Don’t anthropomorphize

Avoid anthropomorphism unless the subject of the research is people.

9. Use relevant images

Use images from your research to illustrate your news. Avoid generic or stereotypical AI images (such as imaginary robots from science fiction).

10. Be open and transparent

Disclose conflicts of interest and/or funding especially if industry or personal interests are involved.

You can find all of the guidelines in this pdf document.



tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Images of AI – between fiction and function

“The currently pervasive images of AI make us look somewhere, at the cost of somewhere else.”

Grace Wahba awarded the 2025 International Prize in Statistics

  16 Apr 2025
Her contributions laid the foundation for modern statistical techniques that power machine learning algorithms such as gradient boosting and neural networks.

Repurposing protein folding models for generation with latent diffusion

  14 Apr 2025
The awarding of the 2024 Nobel Prize to AlphaFold2 marks an important moment of recognition for the of AI role in biology. What comes next after protein folding?

AI UK 2025 conference recordings now available to watch

  11 Apr 2025
Listen to the talks from this year's AI UK conference.

#AAAI2025 workshops round-up 2: Open-source AI for mainstream use, and federated learning for unbounded and intelligent decentralization

  10 Apr 2025
We hear from the organisers of two workshops at AAAI2025 and find out the key takeaways from their events.

Accelerating drug development with AI

  09 Apr 2025
Waterloo researchers use machine learning to predict how new drugs could affect the body




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association