ΑΙhub.org
 

Stanford HAI 2021 fall conference: four radical proposals for a better society


by
11 November 2021



share this:
Stanford HAI conference logo

This year’s Stanford HAI virtual fall conference took place on 9-10 November. It comprised a discussion of four policy proposals that respond to the issues and opportunities created by artificial intelligence. The premise is that each policy proposal poses a challenge to the status quo. These proposals were presented to panels of experts who debated the merits and issues surrounding each policy.

The event was recorded and you can watch both days’ sessions on YouTube. Day one covered proposals 1 and 2, and day two focussed on proposals 3 and 4.

Day one

Proposal 1: Middleware could give consumers choices over what they see online

Middleware is software that rides on top of an existing internet or social media platform such as Google, Facebook or Twitter and can modify the presentation of underlying data. This proposal suggests outsourcing content moderation to a layer of competitive middleware companies that would offer users the ability to tailor their search and social media feeds to suit their personal preferences.

Taking part in this discussion were:
Francis Fukuyama (Freeman Spogli Institute for International Studies)
Ashish Goel (Stanford University)
Kate Starbird (University of Washington)
Katrina Ligett (Hebrew University)
Renee DiResta (Stanford Internet Observatory)

Read more here.

Proposal 2: Universal Basic Income to offset job losses due to automation

The proposal is to give every American adult $1,000 a month to avert an economic crisis.

Taking part in this discussion were:
Andrew Yang (Venture for America)
Darrick Hamilton (The New School Milano)
Mark Duggan (Stanford Institute for Economic Policy Research)
Juliana Bidadanure (Stanford University)

Read more here.

Day two

Proposal 3: Data cooperatives could give us more power over our data

To address the power imbalance between data producers and corporations that profit from our data, scholars propose creating data cooperatives to act as fiduciary intermediaries.

Taking part in this discussion were:
Divya Siddarth (Microsoft)
Pamela Samuelson (UC Berkeley)
Sandy Pentland (MIT)
Jennifer King (Stanford University)

Read more here.

Proposal 4: Third-party auditor access for AI accountability

A proposal for legal protections and regulatory involvement to support organizations that uncover algorithmic harm.

Taking part in this discussion were:
Deborah Raji (UC Berkeley)
DJ Patil (Devoted Health)
Cathy O’Neil (Columbia University)
Fiona Scott Morton (Yale University)

Read more here.

These four proposals were chosen following a public consultation last spring. The organisers received nearly 100 suggestions. In addition to the four discussed at the event, there are six more that the team at Stanford HAI would like to highlight. You can find out more about these here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Introducing the NASA Onboard Artificial Intelligence Research (OnAIR) platform: an interview with Evana Gizzi

  03 Jul 2025
Find out about the OnAIR platform, some of the particular challenges of deploying AI-based solutions in space, and how the tool has been used so far.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

  01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

Forthcoming machine learning and AI seminars: July 2025 edition

  30 Jun 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 July and 31 August 2025.
monthly digest

AIhub monthly digest: June 2025 – gearing up for RoboCup 2025, privacy-preserving models, and mitigating biases in LLMs

  26 Jun 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

RoboCupRescue: an interview with Adam Jacoff

  25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Making optimal decisions without having all the cards in hand

Read about research which won an outstanding paper award at AAAI 2025.

Exploring counterfactuals in continuous-action reinforcement learning

  20 Jun 2025
Shuyang Dong writes about her work that will be presented at IJCAI 2025.

What is vibe coding? A computer scientist explains what it means to have AI write computer code − and what risks that can entail

  19 Jun 2025
Until recently, most computer code was written, at least originally, by human beings. But with the advent of GenAI, that has begun to change.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence