ΑΙhub.org
 

Pieter Abbeel wins ACM Prize in Computing


by
08 April 2022



share this:

Pieter AbbeelPieter Abbeel. Photo courtesy of ACM.

Congratulations to Pieter Abbeel who has been awarded the ACM Prize in Computing for his contribution to robot learning, including learning from demonstrations and deep reinforcement learning for robotic control.

Pieter’s research has covered the following:

  • The development of new apprenticeship learning techniques to significantly improve robotic manipulation.
  • The introduction of new methods to enhance robot visual perception, physics-based tracking, control, and learning from demonstration
  • Development of robots that can perform surgical suturing, detect objects, and plan their trajectories in uncertain situations
  • “Few-shot imitation learning,” where a robot is able to learn to perform a task from just one demonstration after having been pre-trained with a large set of demonstrations on related tasks.
  • Deep reinforcement learning for robotics.
  • The development of a deep reinforcement learning method called Trust Region Policy Optimization. This method stabilizes the reinforcement learning process, enabling robots to learn a range of simulated control skills.

Pieter Abbeel is a Professor of Computer Science and Electrical Engineering at the University of California, Berkeley and the Co-Founder, President and Chief Scientist at Covariant, an AI robotics company. He also hosts the The Robot Brains podcast.

About the ACM Prize in Computing

The ACM Prize in Computing recognizes an early- to mid-career fundamental, innovative contribution in computing that, through its depth, impact and broad implications, exemplifies the greatest achievements in the discipline. The award carries a prize of $250,000.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:



Related posts :



Identifying patterns in insect scents using machine learning

  19 Dec 2025
Scientists will use machine learning to predict what types of molecules interact with insect olfactory receptors.

2025 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  18 Dec 2025
We collate our interviews with the 2025 cohort of doctoral consortium participants.

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

  17 Dec 2025
In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started celebrating their work as “human-made”.

AIhub blog post highlights 2025

  16 Dec 2025
As the year draws to a close, we take a look back at some of our favourite blog posts.

Using machine learning to track greenhouse gas emissions

  15 Dec 2025
PhD candidate Julia Wąsala searches for greenhouse gas emissions in satellite data.

AAAI 2025 presidential panel on the future of AI research – video discussion on AGI

  12 Dec 2025
Watch the first in a series of video discussions from AAAI.

The Machine Ethics podcast: the AI bubble with Tim El-Sheikh

Ben chats to Tim about AI use cases, whether GenAI is even safe, the AI bubble, replacing human workers, data oligarchies and more.

Australia’s vast savannas are changing, and AI is showing us how

Improving decision-making for dynamic and rapidly changing environments.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence