ΑΙhub.org
 

Conference on Reinforcement Learning and Decision Making


by
05 July 2022



share this:

The 5th Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM) 2022 took place at Brown University from 8-11 June. The programme included invited and contributed talks, workshops, and poster sessions. The goal of RLDM is to provide a platform for communication among all researchers interested in learning and decision making over time to achieve a goal.

Over the last few decades, reinforcement learning and decision making have been the focus of an incredible wealth of research spanning a wide variety of fields including psychology, artificial intelligence, machine learning, operations research, control theory, neuroscience, economics and ethology. The interdisciplinary sharing of ideas has been key to many developments in the field, and the meeting is characterized by the multidisciplinarity of the presenters and attendees.

Michael Littman (one of the conference general chairs) said that the conference had been a great success, both in terms of the organization and the content: “For many of us, it was the first in-person conference since the start of the pandemic. The organizers put a lot of thought into ways of keeping people safe from COVID and it appears to have paid off, with very few attendees testing positive. RLDM is always exciting, in part because of the effort to coordinate between the cognitive/neuroscience researchers studying decision-making in natural systems and the AI/ML researchers looking at decision-making in machines”.

RLDM lecture theatreOne of the speakers at RLDM. Photo credit: Michael J Frank.

Watch the recordings of the talks

The talks from the four days of the conference were recorded, and you can watch them here:
Day 1 | Day 2 | Day 3 | Day 4

The talks are also available split by individual speakers here.

Best paper awards

Two articles received the honour of RLDM 2022 Best Paper Award:

  • Yash Chandak, Scott Niekum, Bruno Castro da Silva, Erik Learned-Miller, Emma Brunskill, Philip S. Thomas, Universal off-policy evaluation.
  • Diksha Gupta, Brian DePasquale, Charles Kopec, Carlos Brod, An explanatory link between history biases and lapses.

Some of the participants shared their experience on Twitter.

The event website is here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Competition open for images of “digital transformation at work”

Digit and Better Images of AI have teamed up to launch a competition to create more realistic stock images of "digital transformation at work"
monthly digest

AIhub monthly digest: April 2025 – aligning GenAI with technical standards, ML applied to semiconductor manufacturing, and social choice problems

  30 Apr 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

#ICLR2025 social media round-up

  29 Apr 2025
Find out what participants got up to at the International Conference on Learning Representations.

Copilot Arena: A platform for code

  28 Apr 2025
Copilot Arena is an app designed to evaluate LLMs in real-world settings by collecting preferences directly in a developer’s actual workflow.

Dataset reveals how Reddit communities are adapting to AI

  25 Apr 2025
Researchers at Cornell Tech have released a dataset extracted from more than 300,000 public Reddit communities.

Interview with Eden Hartman: Investigating social choice problems

  24 Apr 2025
Find out more about research presented at AAAI 2025.

The Machine Ethics podcast: Co-design with Pinar Guvenc

This episode, Ben chats to Pinar Guvenc about co-design, whether AI ready for society and society is ready for AI, what design is, co-creation with AI as a stakeholder, bias in design, small language models, and more.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association