ΑΙhub.org
 

GRACE Podcast: Dr Harriett Jernigan interviews Dr Brandeis Marshall


by
04 July 2022



share this:
grace podcast

GRACE: Global Review of AI Community Ethics is a new student-run, peer-reviewed, open-access, international journal. To accompany the journal, there is a podcast hosted by Dr Harriett Jernigan.

In this first episode, Harriett interviews Dr Brandeis Marshall about her research, ranking algorithms, misinformation, combining the analytical and the creative, the lack of Black women in leadership roles in the data industry, the disproportional effect of data on Black women, tech solutionism, her forthcoming book, and more.

Listen to the audio version below:

You can watch the video version here.

Dr Brandeis Marshall is founder and CEO of DataedX Group, a social impact business that provides learning and development activities on recognizing algorithmic harms and humanizing data practices for data educators, scholars and practitioners. She is also Full Professor of Computer Science at Spelman College. She holds a Ph.D. and Master of Science in Computer Science from Rensselaer Polytechnic Institute and a Bachelor of Science in Computer Science from the University of Rochester. Find out more about her forthcoming book here.

Dr Harriett Jernigan is a lecturer at Stanford University. She earned her BA in German and Creative Writing at the University of Alabama and her PhD in German Studies at Stanford University. She specializes in writing across the disciplines; second-language acquisition; project-based instruction; social geography; and German languages, literatures and cultures.




GRACE




            AIhub is supported by:



Related posts :



We risk a deluge of AI-written ‘science’ pushing corporate interests – here’s what to do about it

  16 Sep 2025
A single individual using AI can produce multiple papers that appear valid in a matter of hours.

Deploying agentic AI: what worked, what broke, and what we learned

  15 Sep 2025
AI scientist and researcher Francis Osei investigates what happens when Agentic AI systems are used in real projects, where trust and reproducibility are not optional.

Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.

The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence