ΑΙhub.org
 

#ICML2022 Test of Time award announced


by
20 July 2022



share this:
winners' medal

The International Conference on Machine Learning (ICML) Test of Time award is given to a paper from ICML ten years ago that has had significant impact. This year the award goes to:

Poisoning Attacks against Support Vector Machines
Battista Biggio, Blaine Nelson and Pavel Laskov

The paper investigates adversarial machine learning and, specifically, poisoning attacks on support vector machines (SVMs). The awards committee noted that this paper is one of the earliest and most impactful papers on the theme of poisoning attacks, which are now widely studied by the community. The authors use a gradient ascent strategy in which the gradient is computed based on properties of the SVM’s optimal solution. The method can be kernelized, thereby not needing explicit feature representation. The committee judged that this paper initiated thorough investigation of the problem and inspired significant subsequent work.

The abstract of the paper:
We investigate a family of poisoning attacks against Support Vector Machines (SVM). Such attacks inject specially crafted training data that increases the SVM’s test error. Central to the motivation for these attacks is the fact that most learning algorithms assume that their training data comes from a natural or well-behaved distribution. However, this assumption does not generally hold in security-sensitive settings. As we demonstrate, an intelligent adversary can, to some extent, predict the change of the SVM’s decision function due to malicious input and use this ability to construct malicious data. The proposed attack uses a gradient ascent strategy in which the gradient is computed based on properties of the SVM’s optimal solution. This method can be kernelized and enables the attack to be constructed in the input space even for non-linear kernels. We experimentally demonstrate that our gradient ascent procedure reliably identifies good local maxima of the non-convex validation error surface, which significantly increases the classifier’s test error.

You can read the paper in full here.

In a special award session, first author Battista Biggio gave a plenary talk describing the research, and subsequent developments. In the early days of this research field (around 2006-2010) work on poisoning attacks focussed on simple models and concerned security-related applications, such as spam filtering and network intrusion detection. The challenge that the authors set themselves with this work was to find out if these attacks were possible against a more complex classifier, and something closer to the state-of-the-art. They decided to study SVMs because they were theoretically grounded and quite popular at the time. Their strategy was to find an optimal attack point (to inject the “poisoned” samples) that maximised the classification error.

Battista also spoke about some of the work that has followed in this space, including adversarial examples for deep neural networks, machine learning security, and different types of attacks against machine learning models.

You can watch Battista’s original talk on this paper, at ICML 2012.

There were also two Test of Time honourable mentions:

  • Building high-level features using large scale unsupervised learning
    Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Corrado, Jeff Dean, Andrew Ng
    Read the paper here.
  • On causal and anticausal learning
    Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris Mooij
    Read the paper here.


tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



How AI is opening the playbook on sports analytics

  18 Sep 2025
Waterloo researchers create simulated soccer datasets to unlock insights once reserved for pro teams.

Discrete flow matching framework for graph generation

and   17 Sep 2025
Read about work presented at ICML 2025 that disentangles sampling from training.

We risk a deluge of AI-written ‘science’ pushing corporate interests – here’s what to do about it

  16 Sep 2025
A single individual using AI can produce multiple papers that appear valid in a matter of hours.

Deploying agentic AI: what worked, what broke, and what we learned

  15 Sep 2025
AI scientist and researcher Francis Osei investigates what happens when Agentic AI systems are used in real projects, where trust and reproducibility are not optional.

Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence