ΑΙhub.org
 

Tweets from #ICLR2019


by
16 May 2019



share this:

ICRL, the International Conference on Learning Representations, was held May 6th to 9th 2019 in New Orleans.

Relive the conference through some of the top tweets (#ICLR2019).

Invited talks

Best Papers

Congratulations to the two ICLR 2019 Best Paper winners!

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (arXiV)
Jonathan Frankle · Michael Carbin

Abstract - Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective.
We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.

Summary in MIT Tech Review.

Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks (arXiv)
Yikang Shen · Shawn Tan · Alessandro Sordoni · Aaron Courville

Abstract - Natural language is hierarchically structured: smaller units (e.g., phrases) are nested within larger units (e.g., clauses). When a larger constituent ends, all of the smaller constituents that are nested within it must also be closed. While the standard LSTM architecture allows different neurons to track information at different time scales, it does not have an explicit bias towards modeling a hierarchy of constituents. This paper proposes to add such an inductive bias by ordering the neurons; a vector of master input and forget gates ensures that when a given neuron is updated, all the neurons that follow it in the ordering are also updated. Our novel recurrent architecture, ordered neurons LSTM (ON-LSTM), achieves good performance on four different tasks: language modeling, unsupervised parsing, targeted syntactic evaluation, and logical inference.

And a summary tweet from Microsoft with an accessible blog post.

Increasing diversity

Online presentations

38 presentations can be watched here.

As well as debates.

And here are a couple researchers putting their slides online.

Other summaries and highlights from the conference

AI for social good

Also, what is going on here?

Looks like a good PR move for their paper on the wizard of Wikipedia.

That's a wrap! See you all next year!




Sabine Hauert is Associate Professor at the University of Bristol, and Executive Trustee of AIhub.org
Sabine Hauert is Associate Professor at the University of Bristol, and Executive Trustee of AIhub.org




            AIhub is supported by:


Related posts :



coffee corner

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

New research could block AI models learning from your online content

  14 Aug 2025
The method protects images from being used to train AI or create deepfakes by adding invisible changes that confuse the technology.

What’s coming up at #IJCAI2025?

  13 Aug 2025
Find out what's on the programme at the forthcoming International Joint Conference on Artificial Intelligence.

Interview with Flávia Carvalhido: Responsible multimodal AI

  12 Aug 2025
We hear from PhD student Flávia about her research, what inspired her to study AI, and her experience at AAAI 2025.

Using AI to speed up landslide detection

  11 Aug 2025
Researchers are using AI to speed up landslide detection following major earthquakes and extreme rainfall events.

IJCAI in Canada: 90-second pitches from the next generation of AI researchers

  08 Aug 2025
Find out about some of the interesting research taking place across Canada.

AI for the ancient world: how a new machine learning system can help make sense of Latin inscriptions

  08 Aug 2025
System retrieves textual and contextual parallels, makes use of visual details, and can generate speculative text to fill gaps in inscriptions.

Smart microscope captures aggregation of misfolded proteins

  07 Aug 2025
EPFL researchers have developed a microscope that can predict the onset of misfolded protein aggregation.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence