ΑΙhub.org
 

Tweets from #ICLR2019


by
16 May 2019



share this:

ICRL, the International Conference on Learning Representations, was held May 6th to 9th 2019 in New Orleans.

Relive the conference through some of the top tweets (#ICLR2019).

Invited talks

Best Papers

Congratulations to the two ICLR 2019 Best Paper winners!

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (arXiV)
Jonathan Frankle · Michael Carbin

Abstract - Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective.
We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.

Summary in MIT Tech Review.

Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks (arXiv)
Yikang Shen · Shawn Tan · Alessandro Sordoni · Aaron Courville

Abstract - Natural language is hierarchically structured: smaller units (e.g., phrases) are nested within larger units (e.g., clauses). When a larger constituent ends, all of the smaller constituents that are nested within it must also be closed. While the standard LSTM architecture allows different neurons to track information at different time scales, it does not have an explicit bias towards modeling a hierarchy of constituents. This paper proposes to add such an inductive bias by ordering the neurons; a vector of master input and forget gates ensures that when a given neuron is updated, all the neurons that follow it in the ordering are also updated. Our novel recurrent architecture, ordered neurons LSTM (ON-LSTM), achieves good performance on four different tasks: language modeling, unsupervised parsing, targeted syntactic evaluation, and logical inference.

And a summary tweet from Microsoft with an accessible blog post.

Increasing diversity

Online presentations

38 presentations can be watched here.

As well as debates.

And here are a couple researchers putting their slides online.

Other summaries and highlights from the conference

AI for social good

Also, what is going on here?

Looks like a good PR move for their paper on the wizard of Wikipedia.

That's a wrap! See you all next year!




Sabine Hauert is Associate Professor at the University of Bristol, and Executive Trustee of AIhub.org
Sabine Hauert is Associate Professor at the University of Bristol, and Executive Trustee of AIhub.org




            AIhub is supported by:


Related posts :



Interview with Kunpeng Xu: Kernel representation learning for time series

  11 Feb 2025
We hear from AAAI/SIGAI doctoral consortium participant Kunpeng Xu.

The Children’s AI Summit – an event from The Turing Institute

  10 Feb 2025
Find out more about this event held ahead of the Paris AI Action Summit.
coffee corner

AIhub coffee corner: Bad practice in the publication world

  07 Feb 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Explained: Generative AI’s environmental impact

  06 Feb 2025
Rapid development and deployment of powerful generative AI models comes with environmental consequences, including increased electricity demand and water consumption.

Interview with Nisarg Shah: Understanding fairness in AI and machine learning

  05 Feb 2025
Hear from the winner of the 2024 IJCAI Computers and Thought Award.

Stuart J. Russell wins 2025 AAAI Award for Artificial Intelligence for the Benefit of Humanity

  04 Feb 2025
Stuart will give an invited talk about his work at AAAI 2025.

Forthcoming machine learning and AI seminars: February 2025 edition

  03 Feb 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 February and 31 March 2025.

Hanna Barakat’s image collection & the paradoxes of depicting diversity in AI history

  31 Jan 2025
Read about Hanna's artistic process and reflections upon creating new images about AI




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association