ΑΙhub.org
 

Using neural networks to “upscale” old films


by
06 February 2020



share this:

The famous short, silent film L’arrivée d’un train en gare de La Ciotat, produced by Auguste and Louis Lumière in 1896, hit the news this week. AI developer Denis Shiryaev used a combination of Gigapixel AI and depth-aware video frame interpolation (DAIN) to “upscale” the film to 4k, 60 frames-per-second quality.

You can watch the upscaled video here:
https://www.youtube.com/watch?v=3RYNThid23g

Here is the original version for comparison:

There were two parts to creating this upscaled video. Firstly, the enhancement to 4k resolution. The algorithm used for this is based on neural networks and was trained with millions of photos. The training process helped to create a sophisticated network that learned the best way to enlarge, enhance, and create natural details.

In addition to the enhanced resolution, Shiryaev utilised DAIN to add frames per second. This video frame interpolation method was developed by Wenbo Bao and colleagues (Shanghai Jiao Tong University, University of California, Merced, and Google) and aims to synthesize new frames in between the original frames. In their arXiv article from April 2019 they propose a novel depth-aware video frame interpolation algorithm which explicitly detects occlusion (when one object in a 3D space is blocking another object from view) using depth information. They developed a depth-aware flow projection layer to synthesize intermediate flows that preferentially sample closer objects rather than those further away. Their algorithm also learns hierarchical features to gather contextual information from neighbouring pixels. The model then warps the input frames, depth maps, and contextual features within an adaptive warping layer. Finally, a frame synthesis network generates the output frame using residual learning.

Shiryaev has also added a colour version which was made using DeOldify. DeOldify was created by Jason Antic and employs Generative Adversarial Networks (GANs) to colorize black and white images.
https://youtu.be/EqbOhqXHL7E




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence