ΑΙhub.org
 

Can machine learning learn new physics?


by
18 June 2020



share this:
electromagnetic-waves

Can machine learning learn new physics – or do we have to put it in by hand? A workshop organised by Ilya Nemenman (Emory University), and featuring a number of experts in the field, aimed to find out more.

There has been a rapid increase in research using machine learning to elucidate experimental data from a range of physical systems, from quantum to biological, from statistical to social. However, can these methods discover fundamentally new physics? Is it unrealistic to expect machine learning systems to be able to infer new physics without specifically adapting them to find what we are looking for? What minimal knowledge do these systems need in order to make discoveries and how would we go about doing this?

These questions, and more, were explored by the eight speakers below in the context of diverse systems, and from general theoretical advances to specific applications. Each speaker delivered a 10-15 min talk, followed by questions/discussion. The speakers discussed some of their current research in the field and opined on where the field is heading, and what is needed to get us there.

The speakers

Aleksandra Walczak (CNRS/ENS Paris) – Generative models of immune repertoires
David Schwab (CUNY) – Renormalizing data
Sam Greydanus (Google Brain) – Nature’s cost function
Max Tegmark (MIT) – Symbolic regression & pregression
Bryan Daniels (Arizona State University) – Inferring logic, not just dynamical models
Andrea Liu (University of Pennsylvania) – Doing “statistical mechanics” with big data
Roger Melko (University of Waterloo) – Machine learning and the complexity of quantum simulation
Lucy Colwell (Cambridge University) – Using simple models to explore the sequence plasticity of viral capsids

You can watch the original live version of the workshop, complete with the chat as it happened in real-time on the Emory TMLS YouTube channel.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Visualizing research in the age of AI

  14 Mar 2025
Felice Frankel discusses the implications of generative AI when communicating science visually.

#IJCAI panel on communicating about AI with the public

  13 Mar 2025
A recording of this session at IJCAI2024 is now available to watch.

Interview with Tunazzina Islam: Understand microtargeting and activity patterns on social media

  11 Mar 2025
Hear from Doctoral Consortium participant Tunazzina about her research on computational social science, natural language processing, and social media mining and analysis

Microsoft cuts data centre plans and hikes prices in push to make users carry AI costs

  10 Mar 2025
Microsoft is trying to recoup the costs by raising prices, putting ads in products, and cancelling data centre leases

Report on the future of AI research

  07 Mar 2025
Find out more about a report released by the AAAI 2025 Presidential Panel.

Andrew Barto and Richard Sutton win 2024 Turing Award

  06 Mar 2025
Pair are recognised for their pioneering reinforcement learning research.

#AAAI2025 social media round-up: part two

  05 Mar 2025
What did the participants get up to during the second half of the conference?

Visualizing nanoparticle dynamics using AI-based method

  04 Mar 2025
A team of scientists has developed a method to illuminate the dynamic behavior of nanoparticles.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association