ΑΙhub.org
 

Can machine learning learn new physics?


by
18 June 2020



share this:
electromagnetic-waves

Can machine learning learn new physics – or do we have to put it in by hand? A workshop organised by Ilya Nemenman (Emory University), and featuring a number of experts in the field, aimed to find out more.

There has been a rapid increase in research using machine learning to elucidate experimental data from a range of physical systems, from quantum to biological, from statistical to social. However, can these methods discover fundamentally new physics? Is it unrealistic to expect machine learning systems to be able to infer new physics without specifically adapting them to find what we are looking for? What minimal knowledge do these systems need in order to make discoveries and how would we go about doing this?

These questions, and more, were explored by the eight speakers below in the context of diverse systems, and from general theoretical advances to specific applications. Each speaker delivered a 10-15 min talk, followed by questions/discussion. The speakers discussed some of their current research in the field and opined on where the field is heading, and what is needed to get us there.

The speakers

Aleksandra Walczak (CNRS/ENS Paris) – Generative models of immune repertoires
David Schwab (CUNY) – Renormalizing data
Sam Greydanus (Google Brain) – Nature’s cost function
Max Tegmark (MIT) – Symbolic regression & pregression
Bryan Daniels (Arizona State University) – Inferring logic, not just dynamical models
Andrea Liu (University of Pennsylvania) – Doing “statistical mechanics” with big data
Roger Melko (University of Waterloo) – Machine learning and the complexity of quantum simulation
Lucy Colwell (Cambridge University) – Using simple models to explore the sequence plasticity of viral capsids

You can watch the original live version of the workshop, complete with the chat as it happened in real-time on the Emory TMLS YouTube channel.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence