ΑΙhub.org
 

Can machine learning learn new physics?


by
18 June 2020



share this:
electromagnetic-waves

Can machine learning learn new physics – or do we have to put it in by hand? A workshop organised by Ilya Nemenman (Emory University), and featuring a number of experts in the field, aimed to find out more.

There has been a rapid increase in research using machine learning to elucidate experimental data from a range of physical systems, from quantum to biological, from statistical to social. However, can these methods discover fundamentally new physics? Is it unrealistic to expect machine learning systems to be able to infer new physics without specifically adapting them to find what we are looking for? What minimal knowledge do these systems need in order to make discoveries and how would we go about doing this?

These questions, and more, were explored by the eight speakers below in the context of diverse systems, and from general theoretical advances to specific applications. Each speaker delivered a 10-15 min talk, followed by questions/discussion. The speakers discussed some of their current research in the field and opined on where the field is heading, and what is needed to get us there.

The speakers

Aleksandra Walczak (CNRS/ENS Paris) – Generative models of immune repertoires
David Schwab (CUNY) – Renormalizing data
Sam Greydanus (Google Brain) – Nature’s cost function
Max Tegmark (MIT) – Symbolic regression & pregression
Bryan Daniels (Arizona State University) – Inferring logic, not just dynamical models
Andrea Liu (University of Pennsylvania) – Doing “statistical mechanics” with big data
Roger Melko (University of Waterloo) – Machine learning and the complexity of quantum simulation
Lucy Colwell (Cambridge University) – Using simple models to explore the sequence plasticity of viral capsids

You can watch the original live version of the workshop, complete with the chat as it happened in real-time on the Emory TMLS YouTube channel.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Interview with Shaghayegh (Shirley) Shajarian: Applying generative AI to computer networks

  05 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

How AI can help protect bees from dangerous parasites

  04 Aug 2025
Tiny but mighty, honeybees play a crucial role in our ecosystems, pollinating various plants and crops.

The Machine Ethics podcast: AI Ethics, Risks and Safety Conference 2025

Listen to a special episode recorded at the AI Ethics, Risks and Safety Conference.

Interview with Aneesh Komanduri: Causality and generative modeling

  31 Jul 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.
monthly digest

AIhub monthly digest: July 2025 – RoboCup round-up, ICML in Vancouver, and leveraging feedback in human-robot interactions

  30 Jul 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Yuki Mitsufuji: Text-to-sound generation

  29 Jul 2025
We hear from Sony AI Lead Research Scientist Yuki Mitsufuji to find out more about his latest research.

Open-source Swiss language model to be released this summer

  29 Jul 2025
This summer, EPFL and ETH Zurich will release a large language model (LLM) developed on public infrastructure.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

  25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence