ΑΙhub.org
 

Can machine learning learn new physics?


by
18 June 2020



share this:
electromagnetic-waves

Can machine learning learn new physics – or do we have to put it in by hand? A workshop organised by Ilya Nemenman (Emory University), and featuring a number of experts in the field, aimed to find out more.

There has been a rapid increase in research using machine learning to elucidate experimental data from a range of physical systems, from quantum to biological, from statistical to social. However, can these methods discover fundamentally new physics? Is it unrealistic to expect machine learning systems to be able to infer new physics without specifically adapting them to find what we are looking for? What minimal knowledge do these systems need in order to make discoveries and how would we go about doing this?

These questions, and more, were explored by the eight speakers below in the context of diverse systems, and from general theoretical advances to specific applications. Each speaker delivered a 10-15 min talk, followed by questions/discussion. The speakers discussed some of their current research in the field and opined on where the field is heading, and what is needed to get us there.

The speakers

Aleksandra Walczak (CNRS/ENS Paris) – Generative models of immune repertoires
David Schwab (CUNY) – Renormalizing data
Sam Greydanus (Google Brain) – Nature’s cost function
Max Tegmark (MIT) – Symbolic regression & pregression
Bryan Daniels (Arizona State University) – Inferring logic, not just dynamical models
Andrea Liu (University of Pennsylvania) – Doing “statistical mechanics” with big data
Roger Melko (University of Waterloo) – Machine learning and the complexity of quantum simulation
Lucy Colwell (Cambridge University) – Using simple models to explore the sequence plasticity of viral capsids

You can watch the original live version of the workshop, complete with the chat as it happened in real-time on the Emory TMLS YouTube channel.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



AAAI presidential panel – AI reasoning

  09 Jan 2026
Watch the third panel discussion in this series from AAAI.

The Machine Ethics podcast: Companion AI with Giulia Trojano

Ben chats to Giulia Trojano about AI as an economic narrative, companion chatbots, deskilling of digital literacy, chatbot parental controls, differences between social AI and general AI services and more.

What are small language models and how do they differ from large ones?

  06 Jan 2026
Let’s explore what makes SLMs and LLMs different – and how to choose the right one for your situation.

Forthcoming machine learning and AI seminars: January 2026 edition

  05 Jan 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 January and 28 February 2026.

AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence