ΑΙhub.org
 

Learning for dynamics and control conference


by
29 June 2020



share this:
L4DC

The second conference on learning for dynamics and control (L4DC) was held on 11-12 June. In their introduction to the conference, the organisers write that “over the next decade, the biggest generator of data is expected to be devices which sense and control the physical world.” They note that this explosion of real-time data from the physical world requires a rapprochement of areas such as machine learning, control theory, and optimization. The overall goal for the conference is to create a new community of people that think rigorously across the disciplines, ask new questions, and develop the foundations of this new scientific area.

The live streams of the conference were made available to all and included invited talks and contributed talks. You can watch recordings of these streams from both days of the event. All of the accepted papers can be found here.

Thursday 11 June

Here is the agenda for day one, with the times corresponding to the relevant position in the video recording above:

INVITED TALK

06:20 Karen WillcoxPredictive digital twins: Where data-driven learning meets physics-based modeling.

Dynamics Learning II (4 talks)

47:33 Learning to correspond dynamical systems – Nam Hee Kim, Zhaoming Xie and Michiel van de Panne
1:03:55 Learning dynamical systems with side information – Amir Ali Ahmadi and Bachir El Khadir
1:20:21 Learning nonlinear dynamical systems from a single trajectory – Dylan Foster, Tuhin Sarkar and Alexander Rakhlin
1:34:45 Universal simulation of dynamical systems by recurrent neural nets – Joshua Hanson and Maxim Raginsky

Policy Learning II (3 talks)

2:01:57 Data-driven distributionally robust LQR with multiplicative noise – Peter Coppens, Mathijs Schuurmans and Panagiotis Patrinos
2:16:36 Learning the model-free linear quadratic regulator via random search – Hesameddin Mohammadi, Mihailo R. Jovanović and Mahdi Soltanolkotabi
2:32:17 Optimistic robust linear quadratic dual control – Jack Umenberger and Thomas B Schon

INVITED TALK

3:00:30 Catherine WolframMeasuring the socioeconomic returns to high quality electricity

Friday 12 June

Here is the agenda for day two, with the times corresponding to the relevant slot in the video recording:

INVITED TALK

07:30 Leslie KaelblingDoing for our robots what nature did for us

INVITED TALK

38:40 John LygerosData enabled predictive control: Stochastic systems and implicit dynamic predictors

Policy Learning I (4 talks)

1:20:15 Policy optimization for H2 linear control with Hinfinity robustness guarantee: Implicit regularization and global convergence – Kaiqing Zhang, Bin Hu and Tamer Basar
1:35:55 Scalable reinforcement learning of localized policies for multi-agent networked systems – Guannan Qu, Adam Wierman and Na Li
1:50:55 Learning convex optimization control policies – Akshay Agrawal, Shane Barratt, Stephen Boyd and Bartolomeo Stellato
2:06:25 Online data poisoning attacks – Xuezhou Zhang, Xiaojin Zhu and Laurent Lessard

Dynamics Learning I (3 talks)

2:34:32 Finite sample system identification: Optimal rates and the role of regularization – Yue Sun, Samet Oymak and Maryam Fazel
2:48:22 Sample complexity of Kalman filtering for unknown systems – Anastasios Tsiamis, Nikolai Matni and George Pappas
3:04:30 A spatially and temporally attentive joint trajectory prediction framework for modeling vessel intent – Jasmine Sekhon and Cody Fleming

INVITED TALK

Chelsea FinnExtrapolation via adaptation

Organising an event like this is no mean feat and one of the organisers (Ben Recht) has given his personal take in this blog post, where he reflects on the pros and cons of a virtual event, and proposes possible suggestions for the future of conferences and publishing.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :

AAAI presidential panel – AI and sustainability

  13 Feb 2026
Watch the next discussion based on sustainability, one of the topics covered in the AAAI Future of AI Research report.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

  12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

From Visual Question Answering to multimodal learning: an interview with Aishwarya Agrawal

and   11 Feb 2026
We hear from Aishwarya about research that received a 2019 AAAI / ACM SIGAI Doctoral Dissertation Award honourable mention.

Governing the rise of interactive AI will require behavioral insights

  10 Feb 2026
Yulu Pi writes about her work that was presented at the conference on AI, ethics and society (AIES 2025).

AI is coming to Olympic judging: what makes it a game changer?

  09 Feb 2026
Research suggests that trust, legitimacy, and cultural values may matter just as much as technical accuracy.

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  06 Feb 2026
Sven honoured for his work on AI planning and search.

Congratulations to the #AAAI2026 award winners

  05 Feb 2026
Find out who has won the prestigious 2026 awards for their contributions to the field.

Forthcoming machine learning and AI seminars: February 2026 edition

  04 Feb 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 4 February and 31 March 2026.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence