ΑΙhub.org
 

AI-assisted camera system to monitor seabird behaviour


by
06 November 2020



share this:
Seagulls flying | AIhub

Researchers from Osaka University have combined bio-logging cameras with a machine learning algorithm to help them to shed light on hidden aspects of the lives of seabird species, including gulls and shearwaters.

Bio-logging is a technique involving the mounting of small lightweight video cameras and/or other data-gathering devices onto the bodies of wild animals. These systems allow researchers to observe various aspects of animals’ lives, such as behaviours and social interactions, with minimal disturbance.

However, the considerable battery life required for these high-cost bio-logging systems has proved limiting so far. “Since bio-loggers attached to small animals have to be small and lightweight, they have short runtimes and it was therefore difficult to record interesting infrequent behaviours,” explains study corresponding author Takuya Maekawa.

By using AI-assisted bio-loggers, researchers can use low-cost sensors to automatically detect behaviours of interest in real time, allowing them to conditionally activate high-cost (i.e., resource-intensive) sensors to target those behaviours.

The researchers have put together this video to explain how their system works:

The researchers used a random forest classifier algorithm to determine when to switch on the high-cost sensors. Their model uses accelerometer-based features, which can be used to detect the body movements of the animals with only a small (e.g., 1 second) delay between when data collection begins and when behaviours can first be detected. Features from accelerometers were used to train the model to detect whether the birds were flying, stationary or foraging.

You can see three examples of the camera in action below:

Read the research in full

Machine learning enables improved runtime and precision for bio-loggers on seabirds
Joseph Korpela, Hirokazu Suzuki, Sakiko Matsumoto, Yuichi Mizutani, Masaki Samejima, Takuya Maekawa, Junichi Nakai & Ken Yoda




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :

AAAI presidential panel – AI and sustainability

  13 Feb 2026
Watch the next discussion based on sustainability, one of the topics covered in the AAAI Future of AI Research report.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

  12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

From Visual Question Answering to multimodal learning: an interview with Aishwarya Agrawal

and   11 Feb 2026
We hear from Aishwarya about research that received a 2019 AAAI / ACM SIGAI Doctoral Dissertation Award honourable mention.

Governing the rise of interactive AI will require behavioral insights

  10 Feb 2026
Yulu Pi writes about her work that was presented at the conference on AI, ethics and society (AIES 2025).

AI is coming to Olympic judging: what makes it a game changer?

  09 Feb 2026
Research suggests that trust, legitimacy, and cultural values may matter just as much as technical accuracy.

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  06 Feb 2026
Sven honoured for his work on AI planning and search.

Congratulations to the #AAAI2026 award winners

  05 Feb 2026
Find out who has won the prestigious 2026 awards for their contributions to the field.

Forthcoming machine learning and AI seminars: February 2026 edition

  04 Feb 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 4 February and 31 March 2026.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence