ΑΙhub.org
 

AI-assisted camera system to monitor seabird behaviour


by
06 November 2020



share this:
Seagulls flying | AIhub

Researchers from Osaka University have combined bio-logging cameras with a machine learning algorithm to help them to shed light on hidden aspects of the lives of seabird species, including gulls and shearwaters.

Bio-logging is a technique involving the mounting of small lightweight video cameras and/or other data-gathering devices onto the bodies of wild animals. These systems allow researchers to observe various aspects of animals’ lives, such as behaviours and social interactions, with minimal disturbance.

However, the considerable battery life required for these high-cost bio-logging systems has proved limiting so far. “Since bio-loggers attached to small animals have to be small and lightweight, they have short runtimes and it was therefore difficult to record interesting infrequent behaviours,” explains study corresponding author Takuya Maekawa.

By using AI-assisted bio-loggers, researchers can use low-cost sensors to automatically detect behaviours of interest in real time, allowing them to conditionally activate high-cost (i.e., resource-intensive) sensors to target those behaviours.

The researchers have put together this video to explain how their system works:

The researchers used a random forest classifier algorithm to determine when to switch on the high-cost sensors. Their model uses accelerometer-based features, which can be used to detect the body movements of the animals with only a small (e.g., 1 second) delay between when data collection begins and when behaviours can first be detected. Features from accelerometers were used to train the model to detect whether the birds were flying, stationary or foraging.

You can see three examples of the camera in action below:

Read the research in full

Machine learning enables improved runtime and precision for bio-loggers on seabirds
Joseph Korpela, Hirokazu Suzuki, Sakiko Matsumoto, Yuichi Mizutani, Masaki Samejima, Takuya Maekawa, Junichi Nakai & Ken Yoda




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



What are small language models and how do they differ from large ones?

  06 Jan 2026
Let’s explore what makes SLMs and LLMs different – and how to choose the right one for your situation.

Forthcoming machine learning and AI seminars: January 2026 edition

  05 Jan 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 January and 28 February 2026.

AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence