ΑΙhub.org
 

Observing air quality and flow in cities for public health in times of climate change


by
12 February 2021



share this:

Sentinel 5P satellite for monitoring urban heat islands and the air pollution
Sentinel 5P satellite for monitoring urban heat islands and the air pollution. Image source: Sharing Earth Observational Resources.

With my co-authors Pablo Torres, Sergio Hoyas (both from Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de Valencia, Spain) and Ricardo Vinuesa (from Engineering Mechanics, KTH Royal Institute of Technology, Sweden), we have written a book chapter which focuses on the key role of machine learning (ML) methods to analyze air quality and air flow in urban environments (especially in dense cities) which might be an indicator of public health [1].
AIhub focus issue on climate action
We have provided a review of the ML methods used in this field and we have highlighted the relevance of the urban air quality and air flow to the number of hospitalizations and respiratory diseases as they were reported in the literature. With our survey and based on our pre-studies [2,3], we have suggested these points:

  • ML methods can help for modelling air pollutant distribution.
  • ML methods can help for modelling urban airflow dynamics.
  • Remote sensing satellites can provide important information for observing air pollutants and creating urban maps which allow simulation of urban airflow dynamics.
  • ML methods can help estimate higher resolution air pollutant maps based on the lower resolution remote sensing satellite observations and in-situ sensors. In this way, ML methods can importantly increase the accuracy of traditional air-pollution approaches while limiting the development cost of the models.
  • Once the air pollutant distribution maps and the urban airflow dynamics are known, ML methods can help to estimate expected number of respiratory diseases and the expected number of hospitalizations in an area.

Here is a mini lecture which summarizes our book chapter in a video [4].
https://youtu.be/qZiphexZN_4

References:

[1] P. Torres, B. Sirmacek, S. Hoyas, R. Vinuesa, AIM in Climate Change and City Pollution, Artificial Intelligence in Medicine Book, Springer Nature, to be published February 2021.
[2] R. Vinuesa, et al. The role of artificial intelligence in achieving the Sustainable Development Goals Nature Communications, vol. 11, 2020, p. 233.
[3] L. Guastoni, A. Güemes, A. Ianiro, S. Discetti, P. Schlatter, H. Azizpour, R. Vinuesa,
Convolutional-network models to predict wall-bounded turbulence from wall quantities, e-print, 2020.
[4] Climate change and urban pollution, short lecture video



tags: ,


Beril Sirmacek is an associate professor at Saxion University of Applied Sciences
Beril Sirmacek is an associate professor at Saxion University of Applied Sciences




            AIhub is supported by:



Related posts :



What is AI poisoning? A computer scientist explains

  24 Nov 2025
Poisoning is a growing problem in the world of AI – in particular, for large language models.

New AI technique sounding out audio deepfakes

  21 Nov 2025
Researchers discover a smarter way to detect audio deepfakes that is more accurate and adaptable to keep pace with evolving threats.

Learning robust controllers that work across many partially observable environments

  20 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Interview with Mario Mirabile: trust in multi-agent systems

  18 Nov 2025
We meet ECAI Doctoral Consortium participant, Mario, to find out more about his research.

Review of “Exploring metaphors of AI: visualisations, narratives and perception”

and   17 Nov 2025
A curated research session at the Hype Studies Conference, “(Don’t) Believe the Hype?!” 10-12 September 2025, Barcelona.

Designing value-aligned autonomous vehicles: from moral dilemmas to conflict-sensitive design

  13 Nov 2025
Autonomous systems increasingly face value-laden choices. This blog post introduces the idea of designing “conflict-sensitive” autonomous traffic agents that explicitly recognise, reason about, and act upon competing ethical, legal, and social values.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence