ΑΙhub.org
 

Observing air quality and flow in cities for public health in times of climate change


by
12 February 2021



share this:

Sentinel 5P satellite for monitoring urban heat islands and the air pollution
Sentinel 5P satellite for monitoring urban heat islands and the air pollution. Image source: Sharing Earth Observational Resources.

With my co-authors Pablo Torres, Sergio Hoyas (both from Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de Valencia, Spain) and Ricardo Vinuesa (from Engineering Mechanics, KTH Royal Institute of Technology, Sweden), we have written a book chapter which focuses on the key role of machine learning (ML) methods to analyze air quality and air flow in urban environments (especially in dense cities) which might be an indicator of public health [1].
AIhub focus issue on climate action
We have provided a review of the ML methods used in this field and we have highlighted the relevance of the urban air quality and air flow to the number of hospitalizations and respiratory diseases as they were reported in the literature. With our survey and based on our pre-studies [2,3], we have suggested these points:

  • ML methods can help for modelling air pollutant distribution.
  • ML methods can help for modelling urban airflow dynamics.
  • Remote sensing satellites can provide important information for observing air pollutants and creating urban maps which allow simulation of urban airflow dynamics.
  • ML methods can help estimate higher resolution air pollutant maps based on the lower resolution remote sensing satellite observations and in-situ sensors. In this way, ML methods can importantly increase the accuracy of traditional air-pollution approaches while limiting the development cost of the models.
  • Once the air pollutant distribution maps and the urban airflow dynamics are known, ML methods can help to estimate expected number of respiratory diseases and the expected number of hospitalizations in an area.

Here is a mini lecture which summarizes our book chapter in a video [4].
https://youtu.be/qZiphexZN_4

References:

[1] P. Torres, B. Sirmacek, S. Hoyas, R. Vinuesa, AIM in Climate Change and City Pollution, Artificial Intelligence in Medicine Book, Springer Nature, to be published February 2021.
[2] R. Vinuesa, et al. The role of artificial intelligence in achieving the Sustainable Development Goals Nature Communications, vol. 11, 2020, p. 233.
[3] L. Guastoni, A. Güemes, A. Ianiro, S. Discetti, P. Schlatter, H. Azizpour, R. Vinuesa,
Convolutional-network models to predict wall-bounded turbulence from wall quantities, e-print, 2020.
[4] Climate change and urban pollution, short lecture video



tags: ,


Beril Sirmacek is an associate professor at Saxion University of Applied Sciences
Beril Sirmacek is an associate professor at Saxion University of Applied Sciences




            AIhub is supported by:



Related posts :



Congratulations to the #AIES2025 best paper award winners!

  21 Oct 2025
The four winners of best paper prizes were announced during the opening ceremony at AIES.

From the telegraph to AI, our communications systems have always had hidden environmental costs

  20 Oct 2025
Drawing parallels between new technologies of the past and today.

What’s on the programme at #AIES2025?

  17 Oct 2025
The conference on AI, ethics, and society will take place in Madrid from 20-22 October.

Generative AI model maps how a new antibiotic targets gut bacteria

  16 Oct 2025
Researchers used a GenAI model to reveal how a narrow-spectrum antibiotic attacks disease-causing bacteria.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

Applying machine learning to chip design and manufacturing: interview with Lorenzo Servadei

  14 Oct 2025
Find out how Lorenzo and his team are using ML and Electronic Design Automation.

Why we should be skeptical of the hasty global push to test 15-year-olds’ AI literacy in 2029

  13 Oct 2025
Are schools set to become testing grounds for AI developments?

Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence