ΑΙhub.org
 

Observing air quality and flow in cities for public health in times of climate change


by
12 February 2021



share this:

Sentinel 5P satellite for monitoring urban heat islands and the air pollution
Sentinel 5P satellite for monitoring urban heat islands and the air pollution. Image source: Sharing Earth Observational Resources.

With my co-authors Pablo Torres, Sergio Hoyas (both from Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de Valencia, Spain) and Ricardo Vinuesa (from Engineering Mechanics, KTH Royal Institute of Technology, Sweden), we have written a book chapter which focuses on the key role of machine learning (ML) methods to analyze air quality and air flow in urban environments (especially in dense cities) which might be an indicator of public health [1].
AIhub focus issue on climate action
We have provided a review of the ML methods used in this field and we have highlighted the relevance of the urban air quality and air flow to the number of hospitalizations and respiratory diseases as they were reported in the literature. With our survey and based on our pre-studies [2,3], we have suggested these points:

  • ML methods can help for modelling air pollutant distribution.
  • ML methods can help for modelling urban airflow dynamics.
  • Remote sensing satellites can provide important information for observing air pollutants and creating urban maps which allow simulation of urban airflow dynamics.
  • ML methods can help estimate higher resolution air pollutant maps based on the lower resolution remote sensing satellite observations and in-situ sensors. In this way, ML methods can importantly increase the accuracy of traditional air-pollution approaches while limiting the development cost of the models.
  • Once the air pollutant distribution maps and the urban airflow dynamics are known, ML methods can help to estimate expected number of respiratory diseases and the expected number of hospitalizations in an area.

Here is a mini lecture which summarizes our book chapter in a video [4].
https://youtu.be/qZiphexZN_4

References:

[1] P. Torres, B. Sirmacek, S. Hoyas, R. Vinuesa, AIM in Climate Change and City Pollution, Artificial Intelligence in Medicine Book, Springer Nature, to be published February 2021.
[2] R. Vinuesa, et al. The role of artificial intelligence in achieving the Sustainable Development Goals Nature Communications, vol. 11, 2020, p. 233.
[3] L. Guastoni, A. Güemes, A. Ianiro, S. Discetti, P. Schlatter, H. Azizpour, R. Vinuesa,
Convolutional-network models to predict wall-bounded turbulence from wall quantities, e-print, 2020.
[4] Climate change and urban pollution, short lecture video



tags: ,


Beril Sirmacek is an associate professor at Saxion University of Applied Sciences
Beril Sirmacek is an associate professor at Saxion University of Applied Sciences




            AIhub is supported by:



Related posts :



AAAI presidential panel – AI reasoning

  09 Jan 2026
Watch the third panel discussion in this series from AAAI.

The Machine Ethics podcast: Companion AI with Giulia Trojano

Ben chats to Giulia Trojano about AI as an economic narrative, companion chatbots, deskilling of digital literacy, chatbot parental controls, differences between social AI and general AI services and more.

What are small language models and how do they differ from large ones?

  06 Jan 2026
Let’s explore what makes SLMs and LLMs different – and how to choose the right one for your situation.

Forthcoming machine learning and AI seminars: January 2026 edition

  05 Jan 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 January and 28 February 2026.

AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence