ΑΙhub.org
 

AI as an accelerator of the energy transition, opportunities for a carbon-free energy system


by
23 September 2021



share this:
NL AI coalition report front cover

In the next ten years, the Netherlands aim to take major steps towards increasing the amount of renewable energy produced and the electrification of heat demand and mobility. This desire requires a complete and highly complex transformation of the energy system. The fossil, central energy system is changing into a decentralised system based on renewable energy. Algorithms and AI can make a significant difference in accelerating this transition and in achieving an efficient and sustainable energy system.

When making decisions about the energy transition, such as investing in infrastructure or placing renewable sources, much depends on predictions, often based on limited data, and there are many different interests. New AI techniques can support these kinds of investment and design questions in order to better base them on facts, take better account of multiple interests, and also better explain the choices made and related uncertainties. In addition, there are opportunities for AI in automating energy system operations, supporting energy services, and predicting and automating maintenance. The opportunities and challenges for AI in this context were mapped out in a position paper, AI as an accelerator of the energy transition, opportunities for a carbon-free energy system. This document provides a guideline for next steps in research and innovation, and can serve as a framework of reference for opportunities and challenges that we cannot yet foresee.

This paper is written on behalf of the working group on Energy and Sustainability from the Netherlands AI Coalition (NL AIC). The aim of this working group is to support the development of new AI solutions for challenges in the energy sector and around sustainability and thereby stimulate the Dutch economy. This is achieved by bringing together expertise in AI and from the relevant sectors, and by supporting new collaborations to tackle these types of challenges. Please visit this page for more information.

Reference

The position paper AI as an accelerator of the energy transition, opportunities for a carbon-free energy system is written by Pallas Agterberg, Maarten Bijl, Johann Hurink, Han La Poutré, Gerdien van de Vreede, Mathijs de Weerdt and Tijs Wilbrink on behalf of the working group Energy and Sustainability of the NL AIC.

AIhub focus issue on affordable and clean energy

tags: ,


Mathijs de Weerdt is Associate Professor on Algorithms for Planning and Optimization at Delft University of Technology.
Mathijs de Weerdt is Associate Professor on Algorithms for Planning and Optimization at Delft University of Technology.




            AIhub is supported by:


Related posts :



2024 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  20 Dec 2024
We collate our interviews with the 2024 cohort of doctoral consortium participants.

Interview with Andrews Ata Kangah: Localising illegal mining sites using machine learning and geospatial data

  19 Dec 2024
We spoke to Andrews to find out more about his research, and attending the AfriClimate AI workshop at the Deep Learning Indaba.

#NeurIPS social media round-up part 2

  18 Dec 2024
We pick out some highlights from the second half of the conference.

The Good Robot podcast: Machine vision with Jill Walker Rettberg

  17 Dec 2024
Eleanor and Kerry talk to Jill about machine vision's origins in polished volcanic glass, whether or not we'll actually have self-driving cars, and a famous photo-shopped image.

Five ways you might already encounter AI in cities (and not realise it)

  13 Dec 2024
Researchers studied how residents and visitors experience the presence of AI in public spaces in the UK.

#NeurIPS2024 social media round-up part 1

  12 Dec 2024
Find out what participants have been getting up to at the Neural Information Processing Systems conference in Vancouver.

Congratulations to the #NeurIPS2024 award winners

  11 Dec 2024
Find out who has been recognised by the conference awards.

Multi-agent path finding in continuous environments

and   11 Dec 2024
How can a group of agents minimise their journey length whilst avoiding collisions?




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association