ΑΙhub.org
 

AI as an accelerator of the energy transition, opportunities for a carbon-free energy system


by
23 September 2021



share this:
NL AI coalition report front cover

In the next ten years, the Netherlands aim to take major steps towards increasing the amount of renewable energy produced and the electrification of heat demand and mobility. This desire requires a complete and highly complex transformation of the energy system. The fossil, central energy system is changing into a decentralised system based on renewable energy. Algorithms and AI can make a significant difference in accelerating this transition and in achieving an efficient and sustainable energy system.

When making decisions about the energy transition, such as investing in infrastructure or placing renewable sources, much depends on predictions, often based on limited data, and there are many different interests. New AI techniques can support these kinds of investment and design questions in order to better base them on facts, take better account of multiple interests, and also better explain the choices made and related uncertainties. In addition, there are opportunities for AI in automating energy system operations, supporting energy services, and predicting and automating maintenance. The opportunities and challenges for AI in this context were mapped out in a position paper, AI as an accelerator of the energy transition, opportunities for a carbon-free energy system. This document provides a guideline for next steps in research and innovation, and can serve as a framework of reference for opportunities and challenges that we cannot yet foresee.

This paper is written on behalf of the working group on Energy and Sustainability from the Netherlands AI Coalition (NL AIC). The aim of this working group is to support the development of new AI solutions for challenges in the energy sector and around sustainability and thereby stimulate the Dutch economy. This is achieved by bringing together expertise in AI and from the relevant sectors, and by supporting new collaborations to tackle these types of challenges. Please visit this page for more information.

Reference

The position paper AI as an accelerator of the energy transition, opportunities for a carbon-free energy system is written by Pallas Agterberg, Maarten Bijl, Johann Hurink, Han La Poutré, Gerdien van de Vreede, Mathijs de Weerdt and Tijs Wilbrink on behalf of the working group Energy and Sustainability of the NL AIC.

AIhub focus issue on affordable and clean energy

tags: ,


Mathijs de Weerdt is Associate Professor on Algorithms for Planning and Optimization at Delft University of Technology.
Mathijs de Weerdt is Associate Professor on Algorithms for Planning and Optimization at Delft University of Technology.




            AIhub is supported by:



Related posts :



Forthcoming machine learning and AI seminars: December 2025 edition

  01 Dec 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 December 2025 and 31 January 2026.
monthly digest

AIhub monthly digest: November 2025 – learning robust controllers, trust in multi-agent systems, and a new fairness evaluation dataset

  28 Nov 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

EU proposal to delay parts of its AI Act signal a policy shift that prioritises big tech over fairness

  27 Nov 2025
The EC has proposed delaying parts of the act until 2027 following intense pressure from tech companies and the Trump administration.

Better images of AI on book covers

  25 Nov 2025
We share insights from Chrissi Nerantzi on the decisions behind the cover of the open-sourced book ‘Learning with AI’, and reflect on the significance of book covers.

What is AI poisoning? A computer scientist explains

  24 Nov 2025
Poisoning is a growing problem in the world of AI – in particular, for large language models.

New AI technique sounding out audio deepfakes

  21 Nov 2025
Researchers discover a smarter way to detect audio deepfakes that is more accurate and adaptable to keep pace with evolving threats.

Learning robust controllers that work across many partially observable environments

  20 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence