ΑΙhub.org
 

Smart cities and AI


by
03 December 2021



share this:

cityscape with solar panels
More than 68% of the world’s population live in highly densely built cities. Those cities are not only causing high emissions and urban heat island impacts on the environment, they are also the most vulnerable areas for the impacts of climate change. Thus, immediate climate adaptation of cities is necessary.

AI-based methods not only allow us to automatize observations and make future predictions about the climate change related indicators of cities, they also help us to understand those indicators better by using explainable AI techniques. In this lecture, you will see a brief introduction to our studies in this field.

https://youtu.be/-iRTUMl9T_c



tags: ,


Beril Sirmacek is an associate professor at Saxion University of Applied Sciences
Beril Sirmacek is an associate professor at Saxion University of Applied Sciences




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: January 2025 – artists’ perspectives on generative AI, biomedical knowledge graphs, and ML for studying greenhouse gas e

  29 Jan 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Public competition for better images of AI – winners announced!

  28 Jan 2025
See the winning images from the Better Images of AI and Cambridge Diversity Fund competition.

Translating fiction: how AI could assist humans in expanding access to global literature and culture

  27 Jan 2025
Dutch publishing house Veen Bosch & Keuning (VBK) has confirmed plans to experiment using AI to translate fiction.

Interview with Yuki Mitsufuji: Improving AI image generation

  23 Jan 2025
Find out about two pieces of research tackling different aspects of image generation.

The Good Robot podcast: Using feminist chatbots to fight trolls with Sarah Ciston

  22 Jan 2025
Eleanor and Kerry chat to Sarah Ciston about the difficult labor of content moderation, chatbots to combat trolls, and more.

An open-source training framework to advance multimodal AI

  22 Jan 2025
EPFL researchers have developed 4M, a next-generation, framework for training versatile and scalable multimodal foundation models.

Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.

Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association