ΑΙhub.org
 

Maria Gini wins the 2022 ACM/SIGAI Autonomous Agents Research Award


by
17 January 2022



share this:
trophy

Congratulations to Professor Maria Gini on winning the ACM/SIGAI Autonomous Agents Research Award for 2022! This prestigious prize recognises years of research and leadership in the field of robotics and multi-agent systems.

Maria Gini is Professor of Computer Science and Engineering at the University of Minnesota, and has been at the forefront of the field of robotics and multi-agent systems for many years, consistently bringing AI into robotics.

Her work includes the development of:

  • novel algorithms to connect the logical and geometric aspects of robot motion and learning,
  • novel robot programming languages to bridge the gap between high-level programming languages and programming by guidance,
  • pioneering novel economic-based multi-agent task planning and execution algorithms.

Her work has spanned both the design of novel algorithms and practical applications. These applications have been utilized in settings as varied as warehouses and hospitals, with uses such as surveillance, exploration, and search and rescue.

Maria has been an active member and leader of the agents community since its inception. She has been a consistent mentor and role model, deeply committed to bringing diversity to the fields of AI, robotics, and computing. She is also the former President of International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS).

Maria will be giving an invited talk at AAMAS 2022. More details on this will be available soon on the conference website.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:



Related posts :



Designing value-aligned autonomous vehicles: from moral dilemmas to conflict-sensitive design

  13 Nov 2025
Autonomous systems increasingly face value-laden choices. This blog post introduces the idea of designing “conflict-sensitive” autonomous traffic agents that explicitly recognise, reason about, and act upon competing ethical, legal, and social values.

Learning from failure to tackle extremely hard problems

  12 Nov 2025
This blog post is based on the work "BaNEL: Exploration posteriors for generative modeling using only negative rewards".

How AI can improve storm surge forecasts to help save lives

  10 Nov 2025
Looking at how AI models can help provide more detailed forecasts more quickly.

Rewarding explainability in drug repurposing with knowledge graphs

and   07 Nov 2025
A RL approach that not only predicts which drug-disease pairs might hold promise but also explains why.

AI Song Contest – vote for your favourite

  06 Nov 2025
Voting is open until 9 November.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence