ΑΙhub.org
 

Using AlphaFold to find complex protein knots


by
11 August 2022



share this:

complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right)A complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right). Image credit: Maarten Brems.

The question of how the chemical composition of a protein, the amino acid sequence, determines its 3D structure has been one of the biggest challenges in biophysics for more than half a century. This knowledge about the so-called “folding” of proteins is in great demand, as it contributes significantly to the understanding of various diseases and their treatment, among other things. For these reasons, Google’s DeepMind research team has developed AlphaFold, an artificial intelligence that predicts 3D structures.

A team consisting of researchers from Johannes Gutenberg University Mainz (JGU) and the University of California, Los Angeles, has now taken a closer look at these structures and examined them with respect to knots. We know knots primarily from shoelaces and cables, but they also occur on the nanoscale in our cells. Knotted proteins can not only be used to assess the quality of structure predictions but also raise important questions about folding mechanisms and the evolution of proteins.

The most complex knots as a test for AlphaFold

“We investigated numerically all – that is some 100,000 – predictions of AlphaFold for new protein knots,” said Maarten A. Brems, a PhD student in the group of Dr Peter Virnau at Mainz University. The goal was to identify rare, high-quality structures containing complex and previously unknown protein knots to provide a basis for experimental verification of AlphaFold’s predictions. The study not only discovered the most complex knotted protein to date but also the first composite knots in proteins. The latter can be thought of as two separate knots on the same string. “These new discoveries also provide insight into the evolutionary mechanisms behind such rare proteins”, added Robert Runkel, a theoretical physicist also involved in the project. The results of this study were recently published in Protein Science.

Dr Peter Virnau is pleased with the results: “We have already established a collaboration with our colleague Dr Todd Yeates from UCLA to confirm these structures experimentally. This line of research will shape the biophysics community’s view of artificial intelligence – and we are fortunate to have an expert like Todd Yeates involved.”

Read the research paper

AlphaFold predicts the most complex protein knot and composite protein knots
Maarten A. Brems, Robert Runkel, Todd O. Yeates, Peter Virnau




Johannes Gutenberg Universität Mainz




            AIhub is supported by:


Related posts :



Dataset reveals how Reddit communities are adapting to AI

  25 Apr 2025
Researchers at Cornell Tech have released a dataset extracted from more than 300,000 public Reddit communities.

Interview with Eden Hartman: Investigating social choice problems

  24 Apr 2025
Find out more about research presented at AAAI 2025.

The Machine Ethics podcast: Co-design with Pinar Guvenc

This episode, Ben chats to Pinar Guvenc about co-design, whether AI ready for society and society is ready for AI, what design is, co-creation with AI as a stakeholder, bias in design, small language models, and more.

Why AI can’t take over creative writing

  22 Apr 2025
A large language model tries to generate what a random person who had produced the previous text would produce.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Images of AI – between fiction and function

“The currently pervasive images of AI make us look somewhere, at the cost of somewhere else.”

Grace Wahba awarded the 2025 International Prize in Statistics

  16 Apr 2025
Her contributions laid the foundation for modern statistical techniques that power machine learning algorithms such as gradient boosting and neural networks.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association