ΑΙhub.org
 

Using AlphaFold to find complex protein knots


by
11 August 2022



share this:

complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right)A complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right). Image credit: Maarten Brems.

The question of how the chemical composition of a protein, the amino acid sequence, determines its 3D structure has been one of the biggest challenges in biophysics for more than half a century. This knowledge about the so-called “folding” of proteins is in great demand, as it contributes significantly to the understanding of various diseases and their treatment, among other things. For these reasons, Google’s DeepMind research team has developed AlphaFold, an artificial intelligence that predicts 3D structures.

A team consisting of researchers from Johannes Gutenberg University Mainz (JGU) and the University of California, Los Angeles, has now taken a closer look at these structures and examined them with respect to knots. We know knots primarily from shoelaces and cables, but they also occur on the nanoscale in our cells. Knotted proteins can not only be used to assess the quality of structure predictions but also raise important questions about folding mechanisms and the evolution of proteins.

The most complex knots as a test for AlphaFold

“We investigated numerically all – that is some 100,000 – predictions of AlphaFold for new protein knots,” said Maarten A. Brems, a PhD student in the group of Dr Peter Virnau at Mainz University. The goal was to identify rare, high-quality structures containing complex and previously unknown protein knots to provide a basis for experimental verification of AlphaFold’s predictions. The study not only discovered the most complex knotted protein to date but also the first composite knots in proteins. The latter can be thought of as two separate knots on the same string. “These new discoveries also provide insight into the evolutionary mechanisms behind such rare proteins”, added Robert Runkel, a theoretical physicist also involved in the project. The results of this study were recently published in Protein Science.

Dr Peter Virnau is pleased with the results: “We have already established a collaboration with our colleague Dr Todd Yeates from UCLA to confirm these structures experimentally. This line of research will shape the biophysics community’s view of artificial intelligence – and we are fortunate to have an expert like Todd Yeates involved.”

Read the research paper

AlphaFold predicts the most complex protein knot and composite protein knots
Maarten A. Brems, Robert Runkel, Todd O. Yeates, Peter Virnau




Johannes Gutenberg Universität Mainz




            AIhub is supported by:



Related posts :



AAAI 2025 presidential panel on the future of AI research – video discussion on AGI

  12 Dec 2025
Watch the first in a series of video discussions from AAAI.

The Machine Ethics podcast: the AI bubble with Tim El-Sheikh

Ben chats to Tim about AI use cases, whether GenAI is even safe, the AI bubble, replacing human workers, data oligarchies and more.

Australia’s vast savannas are changing, and AI is showing us how

Improving decision-making for dynamic and rapidly changing environments.

AI language models show bias against regional German dialects

New study examines how artificial intelligence responds to dialect speech.

We asked teachers about their experiences with AI in the classroom — here’s what they said

  05 Dec 2025
Researchers interviewed teachers from across Canada and asked them about their experiences with GenAI in the classroom.

Interview with Alice Xiang: Fair human-centric image dataset for ethical AI benchmarking

  04 Dec 2025
Find out more about this publicly-available, globally-diverse, consent-based human image dataset.

The Machine Ethics podcast: Fostering morality with Dr Oliver Bridge

Talking machine ethics, superintelligence, virtue ethics, AI alignment, fostering morality in humans and AI, and more.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence