ΑΙhub.org
 

Using AI to tackle the challenge of materials structure prediction


by
12 August 2022



share this:

discovery workflowProposed material discovery workflow. From Rapid discovery of stable materials by coordinate-free coarse graining. Image reproduced under a CC BY-NC 4.0 licence.

Researchers have designed a machine learning method that can predict the structure of new materials. The researchers, from Cambridge and Linköping Universities, have designed a way to predict the structure of materials given its constitutive elements. The results are reported in the journal Science Advances.

The arrangement of atoms in a material determines its properties. The ability to predict this arrangement computationally for different combinations of elements, without having to make the material in the lab, would enable researchers to quickly design and improve materials. This paves the way for advances such as better batteries and photovoltaics.

However, there are many ways that atoms can ‘pack’ into a material: some packings are stable, others are not. Determining the stability of a packing is computationally intensive, and calculating every possible arrangement of atoms to find the best one is not practical. This is a significant bottleneck in materials science.

“This materials structure prediction challenge is similar to the protein folding problem in biology,” said Dr Alpha Lee from Cambridge’s Cavendish Laboratory, who co-led the research. “There are many possible structures that a material can ‘fold’ into. Except the materials science problem is perhaps even more challenging than biology because it considers a much broader set of elements.”

Lee and his colleagues developed a method based on machine learning that successfully tackles this challenge. They developed a new way to describe materials, using the mathematics of symmetry to reduce the infinite ways that atoms can pack into materials into a finite set of possibilities. They then used machine learning to predict the ideal packing of atoms, given the elements and their relative composition in the material.

Their method accurately predicts the structure of materials that hold promise for piezoelectric and energy harvesting applications, with improved efficiency over existing models. Their method can also find thousands of new and stable materials that have never been made before, in a way that is computationally efficient.

“The number of materials that are possible is four to five orders of magnitude larger than the total number of materials that we have made since antiquity,” said co-first author Dr Rhys Goodall, also from the Cavendish Laboratory. “Our approach provides an efficient computational approach that can ‘mine’ new stable materials that have never been made before. These hypothetical materials can then be computationally screened for their functional properties.”

The researchers are now using their machine learning platform to find new functional materials such as dielectric materials. They are also integrating other aspects of experimental constraints into their materials discovery approach.

The research was supported in part by the Royal Society and the Winton Programme for the Physics of Sustainability.

Read the paper in full

Rapid discovery of stable materials by coordinate-free coarse graining
Rhys E. A. Goodall, Abhijith S. Parackal, Felix A. Faber, Rickard Armiento, Alpha A. Lee




University of Cambridge




            AIhub is supported by:



Related posts :



Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

How the internet and its bots are sabotaging scientific research

  03 Sep 2025
What most people have failed to fully realise is that internet research has brought along risks of data corruption or impersonation.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  02 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Forthcoming machine learning and AI seminars: September 2025 edition

  01 Sep 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2025.
monthly digest

AIhub monthly digest: August 2025 – causality and generative modelling, responsible multimodal AI, and IJCAI in Montréal and Guangzhou

  29 Aug 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Benyamin Tabarsi: Computing education and generative AI

  28 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

The value of prediction in identifying the worst-off: Interview with Unai Fischer Abaigar

  27 Aug 2025
We hear from the winner of an outstanding paper award at ICML2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence