ΑΙhub.org
 

Using AI to tackle the challenge of materials structure prediction

by
12 August 2022



share this:

discovery workflowProposed material discovery workflow. From Rapid discovery of stable materials by coordinate-free coarse graining. Image reproduced under a CC BY-NC 4.0 licence.

Researchers have designed a machine learning method that can predict the structure of new materials. The researchers, from Cambridge and Linköping Universities, have designed a way to predict the structure of materials given its constitutive elements. The results are reported in the journal Science Advances.

The arrangement of atoms in a material determines its properties. The ability to predict this arrangement computationally for different combinations of elements, without having to make the material in the lab, would enable researchers to quickly design and improve materials. This paves the way for advances such as better batteries and photovoltaics.

However, there are many ways that atoms can ‘pack’ into a material: some packings are stable, others are not. Determining the stability of a packing is computationally intensive, and calculating every possible arrangement of atoms to find the best one is not practical. This is a significant bottleneck in materials science.

“This materials structure prediction challenge is similar to the protein folding problem in biology,” said Dr Alpha Lee from Cambridge’s Cavendish Laboratory, who co-led the research. “There are many possible structures that a material can ‘fold’ into. Except the materials science problem is perhaps even more challenging than biology because it considers a much broader set of elements.”

Lee and his colleagues developed a method based on machine learning that successfully tackles this challenge. They developed a new way to describe materials, using the mathematics of symmetry to reduce the infinite ways that atoms can pack into materials into a finite set of possibilities. They then used machine learning to predict the ideal packing of atoms, given the elements and their relative composition in the material.

Their method accurately predicts the structure of materials that hold promise for piezoelectric and energy harvesting applications, with improved efficiency over existing models. Their method can also find thousands of new and stable materials that have never been made before, in a way that is computationally efficient.

“The number of materials that are possible is four to five orders of magnitude larger than the total number of materials that we have made since antiquity,” said co-first author Dr Rhys Goodall, also from the Cavendish Laboratory. “Our approach provides an efficient computational approach that can ‘mine’ new stable materials that have never been made before. These hypothetical materials can then be computationally screened for their functional properties.”

The researchers are now using their machine learning platform to find new functional materials such as dielectric materials. They are also integrating other aspects of experimental constraints into their materials discovery approach.

The research was supported in part by the Royal Society and the Winton Programme for the Physics of Sustainability.

Read the paper in full

Rapid discovery of stable materials by coordinate-free coarse graining
Rhys E. A. Goodall, Abhijith S. Parackal, Felix A. Faber, Rickard Armiento, Alpha A. Lee




University of Cambridge




            AIhub is supported by:


Related posts :



Keeping learning-based control safe by regulating distributional shift

We propose a new framework to reason about the safety of a learning-based controller with respect to its training distribution.
30 September 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
29 September 2022, by

#IJCAI2022 distinguished paper – Plurality veto: A simple voting rule achieving optimal metric distortion

How can we create a voting system that best represents the preferences of the voters?
28 September 2022, by

AIhub monthly digest: September 2022 – environmental conservation, retrosynthesis, and RoboCup

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 September 2022, by

The Machine Ethics Podcast: Rights, trust and ethical choice with Ricardo Baeza-Yates

Host Ben Byford chats to Ricardo Baeza-Yates about responsible AI, the importance of AI governance, questioning people's intent to create AGI, and more.
26 September 2022, by

Recurrent model-free RL can be a strong baseline for many POMDPs

Considering an approach for dealing with realistic problems with noise and incomplete information.
23 September 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association