ΑΙhub.org
 

Using machine learning to improve all-in-one miniature spectrometers


by
31 October 2022



share this:

On-chip spectrometer on a fingertipOn-chip spectrometer on a fingertip. Credit: Suvi-Tuuli Akkanen, Mikko Turunen, Vincent Pelgrin. Aalto University.

An international team of researchers have designed a miniaturised spectrometer with high resolution, employing machine learning methodology as one of their tools. The results are reported in the journal Science.

Traditionally, spectrometers rely on bulky components to filter and disperse light. In addition, these traditional spectrometers are heavy and large, which limits their application in portable and mobile devices. Modern approaches simplify these components to shrink footprints, but tend to suffer from limited resolution and bandwidth.

To tackle these problems, and to shrink the size of the system, researchers have coupled layered materials with machine learning algorithms. The result is an all-in-one spectrometer thousands of times smaller than many current commercial systems. At the same time, it offers performance comparable to benchtop systems. In other words, these new spectrometers will provide portable alternatives to the standard systems.

“We eliminate the need for detector arrays, dispersive components, and filters. It’s an all-in-one, miniaturised device,” said Dr Hoon Hahn Yoon, from Aalto University in Finland, first author of the paper. This spectrometer-on-chip technology is expected to offer high performance and new usability across science and industry.

The detector uses van der Waals heterostructures – a “sandwich” of different ingredients, including graphene, molybdenum disulfide, and tungsten diselenide. Different combinations of material components enable light detection beyond the visible spectrum, as far as the near-infrared region. This means the spectrometer detects more than just colour, enabling applications such as chemical analysis and night vision.

“We detect a continuum spectrum of light, opening a world of possibilities in a myriad of markets,” said Yoon. “Exploring other material combinations could uncover further functionalities, including even broader hyperspectral detection and improved resolution.”

Artificial intelligence is a key aspect of these devices, commonly called “computational” spectrometers. This technology compensates for the inherent noise increase that inevitably occurs when the optical component is wholly removed.

“We were able to use mathematical algorithms to successfully reconstruct the signals and spectra” said lead author Professor Zhipei Sun, also from Aalto University, and a former member of Cambridge’s Department of Engineering. “The current design is just a proof-of-concept. More advanced algorithms, as well as different combinations of materials, could soon provide even better miniaturised spectrometers.”

The detection of light – and the full analysis of spectroscopic information – has applications in sensing, surveillance, smart agriculture, and more. Among the most promising applications for miniaturised spectrometers are chemical and biochemical analysis, thanks to the capabilities of the devices to detect light in the infrared wavelength range.

The new devices could be incorporated into instruments like drones, mobile phones, and lab-on-a-chip platforms. The latter also opens up opportunities in healthcare. In this field, spectrometers and light-detectors are already key components of imaging and diagnostic systems.

“Our miniaturised spectrometers offer high spatial and spectral resolution at the micrometre and nanometre scales, which is particularly exciting for responsive bio-implants and innovative imaging techniques,” said co-author Professor Tawfique Hasan, from the Cambridge Graphene Centre.

The researchers hope their contribution is a stepping stone towards the development of more advanced computational spectrometers.

Read the paper in full

Miniaturized Spectrometers with a Tunable van der Waals Junction
Hoon Hahn Yoon et al.




University of Cambridge




            AIhub is supported by:


Related posts :



Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.

Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.

The Machine Ethics podcast: 2024 in review with Karin Rudolph and Ben Byford

Karin Rudolph and Ben Byford talk about 2024 touching on the EU AI Act, agent-based AI and advertising, AI search and access to information, conflicting goals of many AI agents, and much more.

Playbook released with guidance on creating images of AI

  15 Jan 2025
Archival Images of AI project enables the creation of meaningful and compelling images of AI.

The Good Robot podcast: Lithium extraction in the Atacama with Sebastián Lehuedé

  13 Jan 2025
Eleanor and Kerry chat to Sebastián Lehuedé about data activism, the effects of lithium extraction, and the importance of reflexive research ethics.

Interview with Erica Kimei: Using ML for studying greenhouse gas emissions from livestock

  10 Jan 2025
Find out about work that brings together agriculture, environmental science, and advanced data analytics.

TELL: Explaining neural networks using logic

  09 Jan 2025
Alessio and colleagues have developed a neural network that can be directly transformed into logic.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association