ΑΙhub.org
 

Researchers develop machine learning model to improve Amazon carbon storage estimates


by
22 February 2023



share this:

Logged forest in the AmazonA logged forest in the Amazon.

By Steve Lundeberg

A collaboration led by Ekena Rangel Pinagé (Oregon State University) has used very-high-resolution satellite imagery to develop a machine learning model that aims to improve climate scientists’ ability to estimate aboveground carbon stocks in the Amazon.

Findings of the study were published in the journal Carbon Balance and Management.

Covering more than 2.5 million square miles in South America, the Amazon is the largest of the world’s tropical forests, which play huge ecological roles for the planet despite covering less than 10% of the Earth’s land area.

More than half of all carbon stored in aboveground biomass is sequestered in tropical rain forests, which are also home to greater than 60% of all terrestrial species. Second growth and degraded forests now cover more area than intact forests, but scientists say the full extent of tropical forest degradation is not completely known.

“Tropical forests are critical for the global carbon budget, and forest degradation through fires and selective logging has been widespread in the Amazon,” said Ekena. “What’s more, there has been a lot of uncertainty regarding land cover classification – categorizing which areas have been logged, which have burned, which are intact forest, which are second growth, etc.”

Ekena and collaborators used commercially available satellites that generate very-high-resolution (VHR) images with pixels at the scale of three square meters. By comparison, satellite imagery produced by Landsat, a long-running partnership between NASA and the U.S. Geological Survey, has a resolution of 30 square meters.

“We also used laser sensors on an aircraft to estimate how much carbon forests lose when they are degraded,” she said. “Deforestation and forest degradation are both substantial sources of carbon to the atmosphere.”

The scientists worked at three study sites in the Brazilian Amazon; two of them were mixtures of intact forest with logged tracts or burned areas, while the third also included some parcels that had been converted to agriculture.

By combining VHR images and laser sensor data, researchers could attribute aboveground carbon stock changes to specific types of forest degradation and determine how much of the greenhouse gas carbon dioxide was released to the atmosphere by either logging or fire events.

Burned and fragmented forest in the AmazonBurned and fragmented forest in the Amazon.

“Our machine learning method was able to distinguish degraded forests from intact forests 86% of the time,” Ekena said. “Sometimes it confused logged forests with intact forests, but it is very good at identifying burned areas. And to most precisely determine the impact of forest degradation on carbon stocks, our team considered that the forest degradation classes – logged or burned – come with uncertainties, as do their corresponding carbon stock changes.”

The scientists found that building those uncertainties into the modeling led to lower estimates of mean carbon density in two of the three test sites by as much as 6.5%. That means earlier estimates that did not consider the inherent uncertainties may have been over-optimistic.

The study also suggests logged forests contain almost the same amount of carbon as intact forests, but that fire can reduce the amount of a forested area’s carbon by as much as 35%.

“Our findings indicate that, when attributing biomass changes to forest degradation, estimates need to account for the uncertainty that’s part of assigning a degradation classification,” Ekena said. “It’s important to fully understand the consequences of forest degradation on the carbon budget and the gains that might occur through regeneration.”

Read the research in full

Effects of forest degradation classification on the uncertainty of aboveground carbon estimates in the Amazon
Ekena Rangel Pinagé, Michael Keller, Christopher P. Peck, Marcos Longo, Paul Duffy & Ovidiu Csillik




Oregon State University




            AIhub is supported by:


Related posts :



The Good Robot podcast: Symbiosis from bacteria to AI with N. Katherine Hayles

  13 Jun 2025
In this episode, Eleanor and Kerry talk to N. Katherine Hayles about her new book, and discuss how the biological concept of symbiosis can inform the relationships we have with AI.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

  12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Graphic novel explains the environmental impact of AI

  11 Jun 2025
EPFL’s Center for Learning Sciences has released Utop’IA, an educational graphic novel that explores the environmental impact of artificial intelligence.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Congratulations to the #IJCAI2025 award winners

  09 Jun 2025
The winners of three prestigious IJCAI awards for 2025 have been announced.

Machine learning powers new approach to detecting soil contaminants

  06 Jun 2025
Method spots pollutants without experimental reference samples.

What is AI slop? Why you are seeing more fake photos and videos in your social media feed

  05 Jun 2025
AI-generated low-quality news sites are popping up all over the place, and AI images are also flooding social media platforms

The Machine Ethics podcast – DeepDive: AI and the environment

In the 100th episode of the podcast, Ben talks to four experts in the field.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence