ΑΙhub.org
 

Researchers develop machine learning model to improve Amazon carbon storage estimates

by
22 February 2023



share this:

Logged forest in the AmazonA logged forest in the Amazon.

By Steve Lundeberg

A collaboration led by Ekena Rangel Pinagé (Oregon State University) has used very-high-resolution satellite imagery to develop a machine learning model that aims to improve climate scientists’ ability to estimate aboveground carbon stocks in the Amazon.

Findings of the study were published in the journal Carbon Balance and Management.

Covering more than 2.5 million square miles in South America, the Amazon is the largest of the world’s tropical forests, which play huge ecological roles for the planet despite covering less than 10% of the Earth’s land area.

More than half of all carbon stored in aboveground biomass is sequestered in tropical rain forests, which are also home to greater than 60% of all terrestrial species. Second growth and degraded forests now cover more area than intact forests, but scientists say the full extent of tropical forest degradation is not completely known.

“Tropical forests are critical for the global carbon budget, and forest degradation through fires and selective logging has been widespread in the Amazon,” said Ekena. “What’s more, there has been a lot of uncertainty regarding land cover classification – categorizing which areas have been logged, which have burned, which are intact forest, which are second growth, etc.”

Ekena and collaborators used commercially available satellites that generate very-high-resolution (VHR) images with pixels at the scale of three square meters. By comparison, satellite imagery produced by Landsat, a long-running partnership between NASA and the U.S. Geological Survey, has a resolution of 30 square meters.

“We also used laser sensors on an aircraft to estimate how much carbon forests lose when they are degraded,” she said. “Deforestation and forest degradation are both substantial sources of carbon to the atmosphere.”

The scientists worked at three study sites in the Brazilian Amazon; two of them were mixtures of intact forest with logged tracts or burned areas, while the third also included some parcels that had been converted to agriculture.

By combining VHR images and laser sensor data, researchers could attribute aboveground carbon stock changes to specific types of forest degradation and determine how much of the greenhouse gas carbon dioxide was released to the atmosphere by either logging or fire events.

Burned and fragmented forest in the AmazonBurned and fragmented forest in the Amazon.

“Our machine learning method was able to distinguish degraded forests from intact forests 86% of the time,” Ekena said. “Sometimes it confused logged forests with intact forests, but it is very good at identifying burned areas. And to most precisely determine the impact of forest degradation on carbon stocks, our team considered that the forest degradation classes – logged or burned – come with uncertainties, as do their corresponding carbon stock changes.”

The scientists found that building those uncertainties into the modeling led to lower estimates of mean carbon density in two of the three test sites by as much as 6.5%. That means earlier estimates that did not consider the inherent uncertainties may have been over-optimistic.

The study also suggests logged forests contain almost the same amount of carbon as intact forests, but that fire can reduce the amount of a forested area’s carbon by as much as 35%.

“Our findings indicate that, when attributing biomass changes to forest degradation, estimates need to account for the uncertainty that’s part of assigning a degradation classification,” Ekena said. “It’s important to fully understand the consequences of forest degradation on the carbon budget and the gains that might occur through regeneration.”

Read the research in full

Effects of forest degradation classification on the uncertainty of aboveground carbon estimates in the Amazon
Ekena Rangel Pinagé, Michael Keller, Christopher P. Peck, Marcos Longo, Paul Duffy & Ovidiu Csillik




Oregon State University




            AIhub is supported by:


Related posts :



The Turing Lectures: Can we trust AI? – with Abeba Birhane

Abeba covers biases in data, the downstream impact on AI systems and our daily lives, how researchers are tackling the problem, and more.
21 November 2024, by

Dynamic faceted search: from haystack to highlight

The authors develop and compare three distinct methods for dynamic facet generation (DFG).
20 November 2024, by , and

Identification of hazardous areas for priority landmine clearance: AI for humanitarian mine action

In close collaboration with the UN and local NGOs, we co-develop an interpretable predictive tool to identify hazardous clusters of landmines.
19 November 2024, by

On the Road to Gundag(AI): Ensuring rural communities benefit from the AI revolution

We need to help regional small businesses benefit from AI while avoiding the harmful aspects.
18 November 2024, by

Making it easier to verify an AI model’s responses

By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
15 November 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association