ΑΙhub.org
 

Advancing data justice research and practice project


by
31 March 2023



share this:

black, white and grey hands with text in the backgroundScreenshot from the data justice video.

Advancing data justice research and practice is a collaboration between the Global Partnership on AI (GPAI), The Alan Turing Institute, 12 policy pilot partners, and participants and communities across the globe. The project aims to augment the current thinking around data justice and to provide actionable resources that will help policymakers, practitioners, and impacted communities.

As part of the project, a short series of documentaries tracks the work of the participants. The first instalment was published last year and discusses how data-driven technologies can be deployed in a way which is compatible with values of social justice.

The second episode of this series has recently been released, and you can watch it below. It defines data injustice and explores some case studies of the human consequences of such injustice.

A major contributions of the project has been the production of a series of three practical guides for policymakers, impacted communities, and developers. The guides consist of background content on data justice and how this relates to AI, as well as practical questions for stakeholder groups to consider in their practice, use, and experience of AI/ML systems.

You can find links to all of the guides here. The pdf versions are at these links:
Data Justice in Practice: A Guide for Policymakers
Data Justice in Practice: A Guide for Impacted Communities
Data Justice in Practice: A Guide for Developers

Find out more about the project here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



We risk a deluge of AI-written ‘science’ pushing corporate interests – here’s what to do about it

  16 Sep 2025
A single individual using AI can produce multiple papers that appear valid in a matter of hours.

Deploying agentic AI: what worked, what broke, and what we learned

  15 Sep 2025
AI scientist and researcher Francis Osei investigates what happens when Agentic AI systems are used in real projects, where trust and reproducibility are not optional.

Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.

The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence