ΑΙhub.org
 

Advancing data justice research and practice project


by
31 March 2023



share this:

black, white and grey hands with text in the backgroundScreenshot from the data justice video.

Advancing data justice research and practice is a collaboration between the Global Partnership on AI (GPAI), The Alan Turing Institute, 12 policy pilot partners, and participants and communities across the globe. The project aims to augment the current thinking around data justice and to provide actionable resources that will help policymakers, practitioners, and impacted communities.

As part of the project, a short series of documentaries tracks the work of the participants. The first instalment was published last year and discusses how data-driven technologies can be deployed in a way which is compatible with values of social justice.

The second episode of this series has recently been released, and you can watch it below. It defines data injustice and explores some case studies of the human consequences of such injustice.

A major contributions of the project has been the production of a series of three practical guides for policymakers, impacted communities, and developers. The guides consist of background content on data justice and how this relates to AI, as well as practical questions for stakeholder groups to consider in their practice, use, and experience of AI/ML systems.

You can find links to all of the guides here. The pdf versions are at these links:
Data Justice in Practice: A Guide for Policymakers
Data Justice in Practice: A Guide for Impacted Communities
Data Justice in Practice: A Guide for Developers

Find out more about the project here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



Designing value-aligned autonomous vehicles: from moral dilemmas to conflict-sensitive design

  13 Nov 2025
Autonomous systems increasingly face value-laden choices. This blog post introduces the idea of designing “conflict-sensitive” autonomous traffic agents that explicitly recognise, reason about, and act upon competing ethical, legal, and social values.

Learning from failure to tackle extremely hard problems

  12 Nov 2025
This blog post is based on the work "BaNEL: Exploration posteriors for generative modeling using only negative rewards".

How AI can improve storm surge forecasts to help save lives

  10 Nov 2025
Looking at how AI models can help provide more detailed forecasts more quickly.

Rewarding explainability in drug repurposing with knowledge graphs

and   07 Nov 2025
A RL approach that not only predicts which drug-disease pairs might hold promise but also explains why.

AI Song Contest – vote for your favourite

  06 Nov 2025
Voting is open until 9 November.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence