ΑΙhub.org
 

A neural network method for satellite anomaly detection


by
05 October 2023



share this:
satellite dish

Rural and remote communities in Canada often rely on satellites to access the internet, but those connections are fraught with many glitches and service interruptions because the technology can be unreliable. The inequity in internet access between these communities and those who live in cities is an ongoing problem with myriad consequences for Canada’s economic productivity.

A team of researchers from the University of Waterloo and the National Research Council (NRC) are tackling this long-standing issue using machine learning. The team’s method, the Multivariate Variance-based Genetic Ensemble Learning Method, merges several existing AI-driven models to detect anomalies in satellites and satellite networks before they can cause major problems.

“For remote areas in Canada and around the world, satellites are often their best option for maintaining internet access,” said Peng Hu, an adjunct professor of computer science and statistics and actuarial science at Waterloo and the corresponding author of the study. “The problem is that the operation of those satellites can be expensive and time-consuming, and issues with them can lead to populations being cut off from the rest of the world.”

The project was conducted at the NRC-Waterloo Collaboration Centre together with Yeying Zhu, associate professor of statistics and actuarial science, in a research project supported by the NRC’s High-throughput and Secure Networks Challenge program.

The researchers tested their method using three datasets: Soil Moisture Active Passive – NASA satellite monitoring soil moisture across Earth, Mars Science Laboratory rover – satellite data from the Mars rover, and Server Machine Dataset – data from a large internet provider.

The researchers chose these datasets both because of their public availability and because they’re representative of a large array of satellite uses.

In a series of tests, their new model outperformed existing models in terms of accuracy, precision, and recall.

“Satellite network systems are going to be more and more important in the future,” Hu said. “This research will help us to design more reliable, resilient, and secure satellite systems.”

The research, Multivariate Variance-based Genetic Ensemble Learning for Satellite Anomaly Detection, appears in the journal IEEE Transactions on Vehicular Technology.

You can read the research in full in the arXiv version.




University of Waterloo




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence