ΑΙhub.org
 

A neural network method for satellite anomaly detection


by
05 October 2023



share this:
satellite dish

Rural and remote communities in Canada often rely on satellites to access the internet, but those connections are fraught with many glitches and service interruptions because the technology can be unreliable. The inequity in internet access between these communities and those who live in cities is an ongoing problem with myriad consequences for Canada’s economic productivity.

A team of researchers from the University of Waterloo and the National Research Council (NRC) are tackling this long-standing issue using machine learning. The team’s method, the Multivariate Variance-based Genetic Ensemble Learning Method, merges several existing AI-driven models to detect anomalies in satellites and satellite networks before they can cause major problems.

“For remote areas in Canada and around the world, satellites are often their best option for maintaining internet access,” said Peng Hu, an adjunct professor of computer science and statistics and actuarial science at Waterloo and the corresponding author of the study. “The problem is that the operation of those satellites can be expensive and time-consuming, and issues with them can lead to populations being cut off from the rest of the world.”

The project was conducted at the NRC-Waterloo Collaboration Centre together with Yeying Zhu, associate professor of statistics and actuarial science, in a research project supported by the NRC’s High-throughput and Secure Networks Challenge program.

The researchers tested their method using three datasets: Soil Moisture Active Passive – NASA satellite monitoring soil moisture across Earth, Mars Science Laboratory rover – satellite data from the Mars rover, and Server Machine Dataset – data from a large internet provider.

The researchers chose these datasets both because of their public availability and because they’re representative of a large array of satellite uses.

In a series of tests, their new model outperformed existing models in terms of accuracy, precision, and recall.

“Satellite network systems are going to be more and more important in the future,” Hu said. “This research will help us to design more reliable, resilient, and secure satellite systems.”

The research, Multivariate Variance-based Genetic Ensemble Learning for Satellite Anomaly Detection, appears in the journal IEEE Transactions on Vehicular Technology.

You can read the research in full in the arXiv version.




University of Waterloo




            AIhub is supported by:


Related posts :



2024 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  20 Dec 2024
We collate our interviews with the 2024 cohort of doctoral consortium participants.

Interview with Andrews Ata Kangah: Localising illegal mining sites using machine learning and geospatial data

  19 Dec 2024
We spoke to Andrews to find out more about his research, and attending the AfriClimate AI workshop at the Deep Learning Indaba.

#NeurIPS social media round-up part 2

  18 Dec 2024
We pick out some highlights from the second half of the conference.

The Good Robot podcast: Machine vision with Jill Walker Rettberg

  17 Dec 2024
Eleanor and Kerry talk to Jill about machine vision's origins in polished volcanic glass, whether or not we'll actually have self-driving cars, and a famous photo-shopped image.

Five ways you might already encounter AI in cities (and not realise it)

  13 Dec 2024
Researchers studied how residents and visitors experience the presence of AI in public spaces in the UK.

#NeurIPS2024 social media round-up part 1

  12 Dec 2024
Find out what participants have been getting up to at the Neural Information Processing Systems conference in Vancouver.

Congratulations to the #NeurIPS2024 award winners

  11 Dec 2024
Find out who has been recognised by the conference awards.

Multi-agent path finding in continuous environments

and   11 Dec 2024
How can a group of agents minimise their journey length whilst avoiding collisions?




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association