ΑΙhub.org
 

A neural network method for satellite anomaly detection

by
05 October 2023



share this:
satellite dish

Rural and remote communities in Canada often rely on satellites to access the internet, but those connections are fraught with many glitches and service interruptions because the technology can be unreliable. The inequity in internet access between these communities and those who live in cities is an ongoing problem with myriad consequences for Canada’s economic productivity.

A team of researchers from the University of Waterloo and the National Research Council (NRC) are tackling this long-standing issue using machine learning. The team’s method, the Multivariate Variance-based Genetic Ensemble Learning Method, merges several existing AI-driven models to detect anomalies in satellites and satellite networks before they can cause major problems.

“For remote areas in Canada and around the world, satellites are often their best option for maintaining internet access,” said Peng Hu, an adjunct professor of computer science and statistics and actuarial science at Waterloo and the corresponding author of the study. “The problem is that the operation of those satellites can be expensive and time-consuming, and issues with them can lead to populations being cut off from the rest of the world.”

The project was conducted at the NRC-Waterloo Collaboration Centre together with Yeying Zhu, associate professor of statistics and actuarial science, in a research project supported by the NRC’s High-throughput and Secure Networks Challenge program.

The researchers tested their method using three datasets: Soil Moisture Active Passive – NASA satellite monitoring soil moisture across Earth, Mars Science Laboratory rover – satellite data from the Mars rover, and Server Machine Dataset – data from a large internet provider.

The researchers chose these datasets both because of their public availability and because they’re representative of a large array of satellite uses.

In a series of tests, their new model outperformed existing models in terms of accuracy, precision, and recall.

“Satellite network systems are going to be more and more important in the future,” Hu said. “This research will help us to design more reliable, resilient, and secure satellite systems.”

The research, Multivariate Variance-based Genetic Ensemble Learning for Satellite Anomaly Detection, appears in the journal IEEE Transactions on Vehicular Technology.

You can read the research in full in the arXiv version.




University of Waterloo




            AIhub is supported by:


Related posts :



AIhub coffee corner: Open vs closed science

The AIhub coffee corner captures the musings of AI experts over a short conversation.
26 April 2024, by

Are emergent abilities of large language models a mirage? – Interview with Brando Miranda

We hear about work that won a NeurIPS 2023 outstanding paper award.
25 April 2024, by

We built an AI tool to help set priorities for conservation in Madagascar: what we found

Daniele Silvestro has developed a tool that can help identify conservation and restoration priorities.
24 April 2024, by

Interview with Mike Lee: Communicating AI decision-making through demonstrations

We hear from AAAI/SIGAI Doctoral Consortium participant Mike Lee about his research on explainable AI.
23 April 2024, by

Machine learning viability modelling of vertical-axis wind turbines

Researchers have used a genetic learning algorithm to identify optimal pitch profiles for the turbine blades.
22 April 2024, by

The Machine Ethics podcast: What is AI? Volume 3

This is a bonus episode looking back over answers to our question: What is AI?
19 April 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association