ΑΙhub.org
 

Researching more data efficient machine learning models


by
12 October 2023



share this:
abstract image - blue blocks in a wavy grid

By Sarah Collins

Researchers have developed a machine learning algorithm that can model complex equations in real-world situations while using far less training data than is normally expected.

The researchers, from the University of Cambridge and Cornell University, found that for partial differential equations – a class of physics equations that describe how things in the natural world evolve in space and time – machine learning models can produce reliable results even when they are provided with limited data.

Their results, reported in the Proceedings of the National Academy of Sciences, could be useful for constructing more time- and cost-efficient machine learning models for applications such as engineering and climate modelling.

Most machine learning models require large amounts of training data before they can begin returning accurate results. Traditionally, a human will annotate a large volume of data – such as a set of images, for example – to train the model.

“Using humans to train machine learning models is effective, but it’s also time-consuming and expensive,” said first author Dr Nicolas Boullé. “We’re interested to know exactly how little data we actually need to train these models and still get reliable results.”

Other researchers have been able to train machine learning models with a small amount of data and get excellent results, but how this was achieved has not been well-explained. For their study, Boullé and his co-authors, Diana Halikias and Alex Townsend from Cornell University, focused on partial differential equations (PDEs).

“PDEs are like the building blocks of physics: they can help explain the physical laws of nature, such as how the steady state is held in a melting block of ice,” said Boullé. “Since they are relatively simple models, we might be able to use them to make some generalisations about why these AI techniques have been so successful in physics.”

The researchers found that PDEs that model diffusion have a structure that is useful for designing AI models. “Using a simple model, you might be able to enforce some of the physics that you already know into the training data set to get better accuracy and performance,” said Boullé.

The researchers constructed an efficient algorithm for predicting the solutions of PDEs under different conditions by exploiting the short and long-range interactions happening. This allowed them to build some mathematical guarantees into the model and determine exactly how much training data was required to end up with a robust model.

“It depends on the field, but for physics, we found that you can actually do a lot with a very limited amount of data,” said Boullé. “It’s surprising how little data you need to end up with a reliable model. Thanks to the mathematics of these equations, we can exploit their structure to make the models more efficient.”

The researchers say that their techniques will allow data scientists to open the ‘black box’ of many machine learning models and design new ones that can be interpreted by humans, although future research is still needed.

“We need to make sure that models are learning the right things, but machine learning for physics is an exciting field – there are lots of interesting maths and physics questions that AI can help us answer,” said Boullé.

Read the research in full

Elliptic PDE learning is provably data-efficient, Nicolas Boullé, Diana Halikias, and Alex Townsend, PNAS (2023).




University of Cambridge




            AIhub is supported by:



Related posts :



Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

How the internet and its bots are sabotaging scientific research

  03 Sep 2025
What most people have failed to fully realise is that internet research has brought along risks of data corruption or impersonation.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  02 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Forthcoming machine learning and AI seminars: September 2025 edition

  01 Sep 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2025.
monthly digest

AIhub monthly digest: August 2025 – causality and generative modelling, responsible multimodal AI, and IJCAI in Montréal and Guangzhou

  29 Aug 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Benyamin Tabarsi: Computing education and generative AI

  28 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

The value of prediction in identifying the worst-off: Interview with Unai Fischer Abaigar

  27 Aug 2025
We hear from the winner of an outstanding paper award at ICML2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence