ΑΙhub.org
 

An approach for automatically determining the possible actions in computer game states

by
17 November 2023



share this:

Due to the great difficulty of thoroughly testing video game software by hand, it is desirable to have AI agents that can automatically explore different game functionalities. A key requirement of such agents is a model of the player actions that the agent can use to both determine the set of possible actions in different game states, as well as perform a chosen action on the game selected by the agent’s policy. The typical game engines that are in use today do not offer such a model of actions, leading existing work to either require human effort to manually define the action model or imprecisely guess the possible actions. In our work, we demonstrate how program analysis is an effective solution to this problem by developing a state-of-the-art analysis for the user input handling logic present in games that can automatically model game actions with a discrete action space.

Our key insight is that the possible actions of games correspond to the different execution paths that can be taken through the user input handling logic present in the game’s code. Our methodology first uses techniques such as dependency analysis and program slicing to identify the parts of code responsible for user input handling. Next, we designed a specialized symbolic execution that evaluates the input handling code with symbolic representations of the user input and game state, giving us a set of conditions under which the different game actions occur. This set of conditions is used to define a discrete action space for the game, where each action corresponds to distinct execution path. Finally, we proposed efficient analyses for determining the set of valid actions as the agent plays the game, as well as the set of relevant device inputs to simulate on the game in order to perform a chosen action.

We implemented a prototype of our action analysis for the Unity game engine, then used it to automate the specification of actions for two popular exploration strategies: simple random exploration, where agents select among the valid actions uniformly at random, and curiosity-driven reinforcement learning, where agents learn over time to prioritize actions more likely to lead to new states. Our key finding was that, for the majority of games in our data set, agents using the actions determined by our analysis achieved exploration performance matching or exceeding that of the ideal case of a manual annotation of the game actions, on average achieving better performance. This demonstrates a key advantage of the capability of the automated analysis to exhaustively consider all possible execution paths, therefore often identifying more combinations of valid inputs than the human annotation.

With the increasing importance of automated testing and analysis techniques for computer games, we believe our work provides a crucial component for the deployment of next generation game testing tools based on intelligent agents. However, even with our automated approach to identifying valid actions and their relevant device inputs, the exploration of large game state spaces remains difficult. The development of novel exploration strategies, refinements, and heuristics to be used with our analysis are important next steps to achieving better game testing agents.

Read the work in full

Automatically Defining Game Action Spaces for Exploration Using Program Analysis, Sasha Volokh, William G.J. Halfond, Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE2023).


This work won the best student paper award at the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE2023).



tags: ,


Sasha Volokh is a PhD Candidate in Computer Science at the University of Southern California.
Sasha Volokh is a PhD Candidate in Computer Science at the University of Southern California.




            AIhub is supported by:


Related posts :



CLAIRE AQuA: AI for citizens

Watch the recording of the latest CLAIRE All Questions Answered session.
06 September 2024, by

Developing a system for real-time sensing of flooded roads

Research fuses multiple data sources with AI model for enhanced sensing of road conditions.
05 September 2024, by

Forthcoming machine learning and AI seminars: September 2024 edition

A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2024.
02 September 2024, by

Causal inference under incentives: an annotated reading list

This annotated reading list is intended to serve as a brief summary of work on causal inference in the presence of strategic agents.
30 August 2024, by

AIhub monthly digest: August 2024 – IJCAI, neural operators, and sequential decision making

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
29 August 2024, by

Air pollution in South Africa: affordable new devices use AI to monitor hotspots in real time

Creating a cost-effective air quality monitoring system based on sensors, Internet of Things and AI.
28 August 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association