ΑΙhub.org
 

Going top shelf with AI to better track hockey data


by
05 April 2024



share this:

Researchers from the University of Waterloo got a valuable assist from artificial intelligence (AI) tools to help capture and analyze data from professional hockey games more quickly and more accurately, something which could have implications for the business of sports.

The growing field of hockey analytics currently relies on the manual analysis of video footage from games. Professional hockey teams across the sport, notably in the National Hockey League (NHL), make important decisions regarding players’ careers based on that information.

“The goal of our research is to interpret a hockey game through video more effectively and efficiently than a human,” said Dr David Clausi, a professor in Waterloo’s Department of Systems Design Engineering. “One person cannot possibly document everything happening in a game.”

Bounding boxes are used to identify players as they move on the ice in broadcast game video. Jersey colours allow identification of home and away players.

Hockey players move fast in a non-linear fashion, dynamically skating across the ice in short shifts. Apart from numbers and last names on jerseys that are not always visible to the camera, uniforms aren’t a robust tool to identify players — particularly at the fast-paced speed hockey is known for. This makes manually tracking and analyzing each player during a game very difficult and prone to human error.

The AI tool developed by Clausi, Dr John Zelek, a professor in Waterloo’s Department of Systems Design Engineering, research assistant professor Yuhao Chen, and a team of graduate students, uses deep learning techniques to automate and improve player tracking analysis.

The research was undertaken in partnership with Stathletes, an Ontario-based professional hockey performance data and analytics company. Working through NHL broadcast video clips frame-by-frame, the research team manually annotated the teams, the players and the players’ movements across the ice. They ran this data through a deep learning neural network to teach the system how to watch a game, compile information and produce accurate analyses and predictions.

When tested, the system’s algorithms delivered high rates of accuracy. It scored 94.5 per cent for tracking players correctly, 97 per cent for identifying teams and 83 per cent for identifying individual players.

The research team is working to refine their prototype, but Stathletes is already using the system to annotate video footage of hockey games. The potential for commercialization goes beyond hockey. By retraining the system’s components, it can be applied to other team sports such as soccer or field hockey.

“Our system can generate data for multiple purposes,” Zelek said. “Coaches can use it to craft winning game strategies, team scouts can hunt for players, and statisticians can identify ways to give teams an extra edge on the rink or field. It really has the potential to transform the business of sport.”

More information about this work can be found in the research paper, Player tracking and identification in ice hockey, published recently in the journal Expert Systems With Applications.



tags:


University of Waterloo




            AIhub is supported by:


Related posts :



Congratulations to the #ICML2025 award winners!

  16 Jul 2025
Find out which articles have won the outstanding paper, outstanding position paper, and the test-of-time awards.

Tackling the 3D Simulation League: an interview with Klaus Dorer and Stefan Glaser

  15 Jul 2025
With RoboCup2025 starting today, we found out more about the 3D simulation league, and the new simulator they have in the works.

What’s coming up at #RoboCup2025?

  10 Jul 2025
Find out when the different leagues competitions and the symposium are taking place.

Wildlife researchers train AI to better identify animal species in trail camera photos

  09 Jul 2025
Scientists are working on improving AI performance in wildlife monitoring through species and environment-specific training.

What’s on the programme at #ICML2025?

  07 Jul 2025
Find out what the International Conference on Machine Learning has in store.

Introducing the NASA Onboard Artificial Intelligence Research (OnAIR) platform: an interview with Evana Gizzi

  03 Jul 2025
Find out about the OnAIR platform, some of the particular challenges of deploying AI-based solutions in space, and how the tool has been used so far.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

  01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

Forthcoming machine learning and AI seminars: July 2025 edition

  30 Jun 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 July and 31 August 2025.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence