ΑΙhub.org
 

Machine learning-aided thermography for building heat loss detection


by
21 June 2024



share this:

Image credit: Passivhaus Institut, CC BY-SA 3.0 , via Wikimedia Commons.

University of Waterloo researchers have developed a new method that could lead to significant energy savings in buildings. The team identified 28 major heat loss regions in a multi-unit residential building with the most severe ones being at wall intersections and around windows.

Building enclosures rely on heat and moisture control to avoid significant energy loss due to airflow leakage, which makes buildings less comfortable and more costly to maintain. This problem will likely be compounded by climate change due to volatile temperature fluctuations. Since manual inspection is time-consuming and infrequently done due to a lack of trained personnel, energy inefficiency becomes a widespread problem for buildings.  

Researchers at Waterloo created an autonomous, real-time platform to make buildings more energy efficient. The platform combines a deep learning method, infrared technology, and a mathematical model that quantifies heat flow to better identify areas of heat loss in buildings.

Using the new method, the researchers conducted an advanced study on a multi-unit residential building in the extreme climate of Canadian prairies, where elderly residents reported discomfort and higher electricity bills due to increased demand for heating in their units. Using machine learning tools, the team trained the program to examine thermal images in real time, achieving 81 percent accuracy in detecting regions of heat loss in the building envelope.  

“The almost 10 per cent increase in accuracy with this AI-based model is impactful, as it enhances occupants’ comfort as well as reduces energy bills,” said Dr. Mohamad Araji, director of Waterloo’s Architectural Engineering Program and head of the Symbiosis Lab, an interdisciplinary group at the university that specializes in developing innovative building systems and building more environmentally friendly buildings.  

The new AI tools helped to remove the element of human error in examining the results and increased the speed of getting the data analyzed by a factor of 12 compared to traditional building inspection methods. 

Future expansions to this work will include utilizing drones equipped with cameras to inspect high-rise buildings. 

“The hope is that our methodology can be used to analyze buildings and lead to millions in energy savings in a much faster way than previously possible,” Araji said.  

Reference

Machine learning-aided thermography for autonomous heat loss detection in buildings, Ali Waqas and Mohamad T. Araji, Energy Conversion and Management, 2024.



tags: ,


University of Waterloo




            AIhub is supported by:



Related posts :



#AAAI2026 social media round up: part 1

  23 Jan 2026
Find out what participants have been getting up to during the first few of days at the conference

Congratulations to the #AAAI2026 outstanding paper award winners

  22 Jan 2026
Find out who has won these prestigious awards at AAAI this year.

3 Questions: How AI could optimize the power grid

  21 Jan 2026
While the growing energy demands of AI are worrying, some techniques can also help make power grids cleaner and more efficient.

Interview with Xiang Fang: Multi-modal learning and embodied intelligence

  20 Jan 2026
In the first of our new series of interviews featuring the AAAI Doctoral Consortium participants, we hear from Xiang Fang.

An introduction to science communication at #AAAI2026

  19 Jan 2026
Find out more about our session on Wednesday 21 January.

Guarding Europe’s hidden lifelines: how AI could protect subsea infrastructure

  15 Jan 2026
EU-funded researchers are developing AI-powered surveillance tools to protect the vast network of subsea cables and pipelines that keep the continent’s energy and data flowing.

What’s coming up at #AAAI2026?

  14 Jan 2026
Find out what's on the programme at the annual AAAI Conference on Artificial Intelligence.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence