ΑΙhub.org
 

Summary of the #IJCAI2024 doctoral consortium


by and
24 September 2024



share this:

Audience watching a panel discussionThe career panel session.

We successfully hosted the doctoral consortium event on August 5th, followed by a poster session on August 6th, at the International Joint Conference on Artificial Intelligence (IJCAI 2024) in Jeju Island, South Korea. We received over a hundred submissions from participants across six continents. Of the eligible submissions, the acceptance rate was 26.54%, with 17 abstracts selected for presentations, 16 of which were delivered during the event. We were fortunate to have the expertise of 65 program committee members from academia, industry, and government, as well as 17 mentors who generously agreed to hold one-on-one meetings with the participants.

Some of the participants presenting their research.

The program showcased outstanding student presentations covering a broad spectrum of significant AI topics, including the role of background knowledge and causal learning in deep learning, neurosymbolic language models, contrastive learning, multiagent teamwork, decision-focused learning, and computational social choice.

We were also inspired by an invited talk from Professor Michael Wooldridge (University of Oxford) on “Writing for Research.” He emphasized the importance of understanding what to say, creating a narrative flow, and the drafting process, all delivered with an engaging Q&A session.

Michael Wooldridge giving his invited talk on “Writing for Research.”

Following this, we had a dynamic career panel, a cherished tradition of the doctoral consortium. The panel featured esteemed scholars such as Professor Ken Forbus (Northwestern University), Professor Kate Larson (University of Waterloo), Professor Peter Stone (University of Texas at Austin), and Professor Caren Han (The University of Melbourne). The discussion covered a range of topics, including common mistakes in early career presentations, transitioning between different AI research areas, successful grant writing, managing interdisciplinary research in AI, and time management.

Both the invited talk and career panel provided students with an excellent opportunity to ask questions about their future careers and other aspects of their graduate and post-graduate journeys.

You can see the program in more detail here.



tags: , ,


Anita Raja is a Professor of Computer Science at the City University of New York
Anita Raja is a Professor of Computer Science at the City University of New York

Jihie Kim is a Professor in the Department of Computer and Artificial Intelligence at Dongguk University
Jihie Kim is a Professor in the Department of Computer and Artificial Intelligence at Dongguk University




            AIhub is supported by:



Related posts :



3 Questions: How AI could optimize the power grid

  21 Jan 2026
While the growing energy demands of AI are worrying, some techniques can also help make power grids cleaner and more efficient.

Interview with Xiang Fang: Multi-modal learning and embodied intelligence

  20 Jan 2026
In the first of our new series of interviews featuring the AAAI Doctoral Consortium participants, we hear from Xiang Fang.

An introduction to science communication at #AAAI2026

  19 Jan 2026
Find out more about our session on Wednesday 21 January.

Guarding Europe’s hidden lifelines: how AI could protect subsea infrastructure

  15 Jan 2026
EU-funded researchers are developing AI-powered surveillance tools to protect the vast network of subsea cables and pipelines that keep the continent’s energy and data flowing.

What’s coming up at #AAAI2026?

  14 Jan 2026
Find out what's on the programme at the annual AAAI Conference on Artificial Intelligence.

Taking humanoid soccer to the next level: An interview with RoboCup trustee Alessandra Rossi

  13 Jan 2026
Find out more about the forthcoming changes to the RoboCup soccer leagues.

Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence