ΑΙhub.org
 

Summary of the #IJCAI2024 doctoral consortium


by and
24 September 2024



share this:

Audience watching a panel discussionThe career panel session.

We successfully hosted the doctoral consortium event on August 5th, followed by a poster session on August 6th, at the International Joint Conference on Artificial Intelligence (IJCAI 2024) in Jeju Island, South Korea. We received over a hundred submissions from participants across six continents. Of the eligible submissions, the acceptance rate was 26.54%, with 17 abstracts selected for presentations, 16 of which were delivered during the event. We were fortunate to have the expertise of 65 program committee members from academia, industry, and government, as well as 17 mentors who generously agreed to hold one-on-one meetings with the participants.

Some of the participants presenting their research.

The program showcased outstanding student presentations covering a broad spectrum of significant AI topics, including the role of background knowledge and causal learning in deep learning, neurosymbolic language models, contrastive learning, multiagent teamwork, decision-focused learning, and computational social choice.

We were also inspired by an invited talk from Professor Michael Wooldridge (University of Oxford) on “Writing for Research.” He emphasized the importance of understanding what to say, creating a narrative flow, and the drafting process, all delivered with an engaging Q&A session.

Michael Wooldridge giving his invited talk on “Writing for Research.”

Following this, we had a dynamic career panel, a cherished tradition of the doctoral consortium. The panel featured esteemed scholars such as Professor Ken Forbus (Northwestern University), Professor Kate Larson (University of Waterloo), Professor Peter Stone (University of Texas at Austin), and Professor Caren Han (The University of Melbourne). The discussion covered a range of topics, including common mistakes in early career presentations, transitioning between different AI research areas, successful grant writing, managing interdisciplinary research in AI, and time management.

Both the invited talk and career panel provided students with an excellent opportunity to ask questions about their future careers and other aspects of their graduate and post-graduate journeys.

You can see the program in more detail here.



tags: , ,


Anita Raja is a Professor of Computer Science at the City University of New York
Anita Raja is a Professor of Computer Science at the City University of New York

Jihie Kim is a Professor in the Department of Computer and Artificial Intelligence at Dongguk University
Jihie Kim is a Professor in the Department of Computer and Artificial Intelligence at Dongguk University




            AIhub is supported by:


Related posts :



Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Images of AI – between fiction and function

“The currently pervasive images of AI make us look somewhere, at the cost of somewhere else.”

Grace Wahba awarded the 2025 International Prize in Statistics

  16 Apr 2025
Her contributions laid the foundation for modern statistical techniques that power machine learning algorithms such as gradient boosting and neural networks.

Repurposing protein folding models for generation with latent diffusion

  14 Apr 2025
The awarding of the 2024 Nobel Prize to AlphaFold2 marks an important moment of recognition for the of AI role in biology. What comes next after protein folding?

AI UK 2025 conference recordings now available to watch

  11 Apr 2025
Listen to the talks from this year's AI UK conference.

#AAAI2025 workshops round-up 2: Open-source AI for mainstream use, and federated learning for unbounded and intelligent decentralization

  10 Apr 2025
We hear from the organisers of two workshops at AAAI2025 and find out the key takeaways from their events.

Accelerating drug development with AI

  09 Apr 2025
Waterloo researchers use machine learning to predict how new drugs could affect the body




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association