ΑΙhub.org
 

Summary of the #IJCAI2024 doctoral consortium


by and
24 September 2024



share this:

Audience watching a panel discussionThe career panel session.

We successfully hosted the doctoral consortium event on August 5th, followed by a poster session on August 6th, at the International Joint Conference on Artificial Intelligence (IJCAI 2024) in Jeju Island, South Korea. We received over a hundred submissions from participants across six continents. Of the eligible submissions, the acceptance rate was 26.54%, with 17 abstracts selected for presentations, 16 of which were delivered during the event. We were fortunate to have the expertise of 65 program committee members from academia, industry, and government, as well as 17 mentors who generously agreed to hold one-on-one meetings with the participants.

Some of the participants presenting their research.

The program showcased outstanding student presentations covering a broad spectrum of significant AI topics, including the role of background knowledge and causal learning in deep learning, neurosymbolic language models, contrastive learning, multiagent teamwork, decision-focused learning, and computational social choice.

We were also inspired by an invited talk from Professor Michael Wooldridge (University of Oxford) on “Writing for Research.” He emphasized the importance of understanding what to say, creating a narrative flow, and the drafting process, all delivered with an engaging Q&A session.

Michael Wooldridge giving his invited talk on “Writing for Research.”

Following this, we had a dynamic career panel, a cherished tradition of the doctoral consortium. The panel featured esteemed scholars such as Professor Ken Forbus (Northwestern University), Professor Kate Larson (University of Waterloo), Professor Peter Stone (University of Texas at Austin), and Professor Caren Han (The University of Melbourne). The discussion covered a range of topics, including common mistakes in early career presentations, transitioning between different AI research areas, successful grant writing, managing interdisciplinary research in AI, and time management.

Both the invited talk and career panel provided students with an excellent opportunity to ask questions about their future careers and other aspects of their graduate and post-graduate journeys.

You can see the program in more detail here.



tags: , ,


Anita Raja is a Professor of Computer Science at the City University of New York
Anita Raja is a Professor of Computer Science at the City University of New York

Jihie Kim is a Professor in the Department of Computer and Artificial Intelligence at Dongguk University
Jihie Kim is a Professor in the Department of Computer and Artificial Intelligence at Dongguk University




            AIhub is supported by:



Related posts :



Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.
monthly digest

AIhub monthly digest: September 2025 – conference reviewing, soccer ball detection, and memory traces

  30 Sep 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Botanical time machines: AI is unlocking a treasure trove of data held in herbarium collections

  29 Sep 2025
New research describes the development and testing of a new AI-driven tool.

All creatures, great, small, and artificial

  26 Sep 2025
AI in Veterinary Medicine and what it can teach us about the data revolution.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence