ΑΙhub.org
 

Summary of the #IJCAI2024 doctoral consortium


by and
24 September 2024



share this:

Audience watching a panel discussionThe career panel session.

We successfully hosted the doctoral consortium event on August 5th, followed by a poster session on August 6th, at the International Joint Conference on Artificial Intelligence (IJCAI 2024) in Jeju Island, South Korea. We received over a hundred submissions from participants across six continents. Of the eligible submissions, the acceptance rate was 26.54%, with 17 abstracts selected for presentations, 16 of which were delivered during the event. We were fortunate to have the expertise of 65 program committee members from academia, industry, and government, as well as 17 mentors who generously agreed to hold one-on-one meetings with the participants.

Some of the participants presenting their research.

The program showcased outstanding student presentations covering a broad spectrum of significant AI topics, including the role of background knowledge and causal learning in deep learning, neurosymbolic language models, contrastive learning, multiagent teamwork, decision-focused learning, and computational social choice.

We were also inspired by an invited talk from Professor Michael Wooldridge (University of Oxford) on “Writing for Research.” He emphasized the importance of understanding what to say, creating a narrative flow, and the drafting process, all delivered with an engaging Q&A session.

Michael Wooldridge giving his invited talk on “Writing for Research.”

Following this, we had a dynamic career panel, a cherished tradition of the doctoral consortium. The panel featured esteemed scholars such as Professor Ken Forbus (Northwestern University), Professor Kate Larson (University of Waterloo), Professor Peter Stone (University of Texas at Austin), and Professor Caren Han (The University of Melbourne). The discussion covered a range of topics, including common mistakes in early career presentations, transitioning between different AI research areas, successful grant writing, managing interdisciplinary research in AI, and time management.

Both the invited talk and career panel provided students with an excellent opportunity to ask questions about their future careers and other aspects of their graduate and post-graduate journeys.

You can see the program in more detail here.



tags: , ,


Anita Raja is a Professor of Computer Science at the City University of New York
Anita Raja is a Professor of Computer Science at the City University of New York

Jihie Kim is a Professor in the Department of Computer and Artificial Intelligence at Dongguk University
Jihie Kim is a Professor in the Department of Computer and Artificial Intelligence at Dongguk University




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: March 2025 – human-allied AI, differential privacy, and social media microtargeting

  28 Mar 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

AI ring tracks spelled words in American Sign Language

  27 Mar 2025
In its current form, SpellRing could be used to enter text into computers or smartphones via fingerspelling.

How AI images are ‘flattening’ Indigenous cultures – creating a new form of tech colonialism

  26 Mar 2025
AI-generated stock images that claim to depict “Indigenous Australians”, don’t resemble Aboriginal and Torres Strait Islander peoples.

Interview with Lea Demelius: Researching differential privacy

  25 Mar 2025
We hear from doctoral consortium participant Lea Demelius who is investigating the trade-offs and synergies that arise between various requirements for trustworthy AI.

The Machine Ethics podcast: Careful technology with Rachel Coldicutt

This episode, Ben chats to Rachel Coldicutt about AI taxonomy, innovating for everyone not just the few, responsibilities of researchers, and more.

Interview with AAAI Fellow Roberto Navigli: multilingual natural language processing

  21 Mar 2025
Roberto tells us about his career path, some big research projects he’s led, and why it’s important to follow your passion.

Museums have tons of data, and AI could make it more accessible − but standardizing and organizing it across fields won’t be easy

  20 Mar 2025
How can AI models help organize large amounts of data from different collections, and what are the challenges?

Shlomo Zilberstein wins the 2025 ACM/SIGAI Autonomous Agents Research Award

  19 Mar 2025
Congratulations to Shlomo Zilberstein on winning this prestigious award!




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association