ΑΙhub.org
 

Accelerating drug development with AI


by
09 April 2025



share this:

This picture is made up of 9 images in rows of 3. Each row shows a different image of a pill bottle spilling out pills onto a plain surface, on yellow or white backgrounds. On one side, the image is an original photograph. The next two iterations show it getting represented in progressively larger blocks of colour.Rens Dimmendaal & Banjong Raksaphakdee / Medicines (flipped) / Licenced by CC-BY 4.0

Developing new drugs to treat illnesses has typically been a slow and expensive process. However, a team of researchers at the University of Waterloo uses machine learning to speed up the development time.

The Waterloo research team has created “Imagand,” a generative artificial intelligence model that assesses existing information about potential drugs and then suggests their potential properties. Trained on and tested against existing drug data, Imagand successfully predicts important properties of different drugs that have already been independently verified in lab studies, demonstrating the AI’s accuracy.

Traditionally, bringing a successful drug candidate to market can cost between US$2 billion and US$3 billion and take over a decade to complete. Generative AI is posed to transform drug discovery by harnessing large amounts of drug data across diverse areas.

The image from the study shows a correlation between pairs of pharmacokinetic (PK) properties for a single drug. Each drug has its unique chemical profile and set of PK property values. The goal of the diagram is to show the distribution similarity between the real reported pairs of PK properties correlation from in vitro studies and those generated by the researchers’ model. This is important to show that the tool can be helpful in guiding and reducing the cost of large in vitro assays and studies to accelerate pre-clinical drug discovery.

“There’s an enormous pool of possible chemicals and proteins to investigate when developing a new drug, which makes it very expensive to do drug discovery because you have to test millions of molecules with thousands of different targets,” said Bing Hu, a PhD candidate in Computer Science and the lead author on the research. “We are figuring out ways that AI can make that faster and cheaper.”

One of the major challenges in pharmaceutical medicine development is understanding not only how a drug might affect the body in isolation but also how it might interact with other drugs or a person’s lifestyle. This information is particularly difficult to gather because scientific studies of drugs usually only focus on the drugs’ predetermined properties, not on how they may interact with other drugs.

Ultimately, the team hopes medical researchers can use Imagand in the future to understand how drugs interact, allowing them to eliminate potential new drug candidates that would have bad side effects or interactions.

“For example, this AI-enabled process can help us understand how toxic a drug is, how it affects the heart, or how it might interact negatively with other drugs commonly used in treating an illness,” said Helen Chen, a professor in the School of Public Health Sciences and Computer Science at Waterloo. “This is one example of how AI is helping us move towards more precise, personalized care.”

The research, titled “Drug discovery SMILES-to-pharmacokinetics diffusion models with deep molecular understanding“, is currently in preprint.



tags: ,


University of Waterloo




            AIhub is supported by:



Related posts :



Interview with Mario Mirabile: trust in multi-agent systems

  18 Nov 2025
We meet ECAI Doctoral Consortium participant, Mario, to find out more about his research.

Review of “Exploring metaphors of AI: visualisations, narratives and perception”

and   17 Nov 2025
A curated research session at the Hype Studies Conference, “(Don’t) Believe the Hype?!” 10-12 September 2025, Barcelona.

Designing value-aligned autonomous vehicles: from moral dilemmas to conflict-sensitive design

  13 Nov 2025
Autonomous systems increasingly face value-laden choices. This blog post introduces the idea of designing “conflict-sensitive” autonomous traffic agents that explicitly recognise, reason about, and act upon competing ethical, legal, and social values.

Learning from failure to tackle extremely hard problems

  12 Nov 2025
This blog post is based on the work "BaNEL: Exploration posteriors for generative modeling using only negative rewards".

How AI can improve storm surge forecasts to help save lives

  10 Nov 2025
Looking at how AI models can help provide more detailed forecasts more quickly.

Rewarding explainability in drug repurposing with knowledge graphs

and   07 Nov 2025
A RL approach that not only predicts which drug-disease pairs might hold promise but also explains why.

AI Song Contest – vote for your favourite

  06 Nov 2025
Voting is open until 9 November.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence