ΑΙhub.org
 

Accelerating drug development with AI


by
09 April 2025



share this:

This picture is made up of 9 images in rows of 3. Each row shows a different image of a pill bottle spilling out pills onto a plain surface, on yellow or white backgrounds. On one side, the image is an original photograph. The next two iterations show it getting represented in progressively larger blocks of colour.Rens Dimmendaal & Banjong Raksaphakdee / Medicines (flipped) / Licenced by CC-BY 4.0

Developing new drugs to treat illnesses has typically been a slow and expensive process. However, a team of researchers at the University of Waterloo uses machine learning to speed up the development time.

The Waterloo research team has created “Imagand,” a generative artificial intelligence model that assesses existing information about potential drugs and then suggests their potential properties. Trained on and tested against existing drug data, Imagand successfully predicts important properties of different drugs that have already been independently verified in lab studies, demonstrating the AI’s accuracy.

Traditionally, bringing a successful drug candidate to market can cost between US$2 billion and US$3 billion and take over a decade to complete. Generative AI is posed to transform drug discovery by harnessing large amounts of drug data across diverse areas.

The image from the study shows a correlation between pairs of pharmacokinetic (PK) properties for a single drug. Each drug has its unique chemical profile and set of PK property values. The goal of the diagram is to show the distribution similarity between the real reported pairs of PK properties correlation from in vitro studies and those generated by the researchers’ model. This is important to show that the tool can be helpful in guiding and reducing the cost of large in vitro assays and studies to accelerate pre-clinical drug discovery.

“There’s an enormous pool of possible chemicals and proteins to investigate when developing a new drug, which makes it very expensive to do drug discovery because you have to test millions of molecules with thousands of different targets,” said Bing Hu, a PhD candidate in Computer Science and the lead author on the research. “We are figuring out ways that AI can make that faster and cheaper.”

One of the major challenges in pharmaceutical medicine development is understanding not only how a drug might affect the body in isolation but also how it might interact with other drugs or a person’s lifestyle. This information is particularly difficult to gather because scientific studies of drugs usually only focus on the drugs’ predetermined properties, not on how they may interact with other drugs.

Ultimately, the team hopes medical researchers can use Imagand in the future to understand how drugs interact, allowing them to eliminate potential new drug candidates that would have bad side effects or interactions.

“For example, this AI-enabled process can help us understand how toxic a drug is, how it affects the heart, or how it might interact negatively with other drugs commonly used in treating an illness,” said Helen Chen, a professor in the School of Public Health Sciences and Computer Science at Waterloo. “This is one example of how AI is helping us move towards more precise, personalized care.”

The research, titled “Drug discovery SMILES-to-pharmacokinetics diffusion models with deep molecular understanding“, is currently in preprint.



tags: ,


University of Waterloo




            AIhub is supported by:



Related posts :



Better images of AI on book covers

  25 Nov 2025
We share insights from Chrissi Nerantzi on the decisions behind the cover of the open-sourced book ‘Learning with AI’, and reflect on the significance of book covers.

What is AI poisoning? A computer scientist explains

  24 Nov 2025
Poisoning is a growing problem in the world of AI – in particular, for large language models.

New AI technique sounding out audio deepfakes

  21 Nov 2025
Researchers discover a smarter way to detect audio deepfakes that is more accurate and adaptable to keep pace with evolving threats.

Learning robust controllers that work across many partially observable environments

  20 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Interview with Mario Mirabile: trust in multi-agent systems

  18 Nov 2025
We meet ECAI Doctoral Consortium participant, Mario, to find out more about his research.

Review of “Exploring metaphors of AI: visualisations, narratives and perception”

and   17 Nov 2025
A curated research session at the Hype Studies Conference, “(Don’t) Believe the Hype?!” 10-12 September 2025, Barcelona.

Designing value-aligned autonomous vehicles: from moral dilemmas to conflict-sensitive design

  13 Nov 2025
Autonomous systems increasingly face value-laden choices. This blog post introduces the idea of designing “conflict-sensitive” autonomous traffic agents that explicitly recognise, reason about, and act upon competing ethical, legal, and social values.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence