ΑΙhub.org
 

Accelerating drug development with AI


by
09 April 2025



share this:

This picture is made up of 9 images in rows of 3. Each row shows a different image of a pill bottle spilling out pills onto a plain surface, on yellow or white backgrounds. On one side, the image is an original photograph. The next two iterations show it getting represented in progressively larger blocks of colour.Rens Dimmendaal & Banjong Raksaphakdee / Medicines (flipped) / Licenced by CC-BY 4.0

Developing new drugs to treat illnesses has typically been a slow and expensive process. However, a team of researchers at the University of Waterloo uses machine learning to speed up the development time.

The Waterloo research team has created “Imagand,” a generative artificial intelligence model that assesses existing information about potential drugs and then suggests their potential properties. Trained on and tested against existing drug data, Imagand successfully predicts important properties of different drugs that have already been independently verified in lab studies, demonstrating the AI’s accuracy.

Traditionally, bringing a successful drug candidate to market can cost between US$2 billion and US$3 billion and take over a decade to complete. Generative AI is posed to transform drug discovery by harnessing large amounts of drug data across diverse areas.

The image from the study shows a correlation between pairs of pharmacokinetic (PK) properties for a single drug. Each drug has its unique chemical profile and set of PK property values. The goal of the diagram is to show the distribution similarity between the real reported pairs of PK properties correlation from in vitro studies and those generated by the researchers’ model. This is important to show that the tool can be helpful in guiding and reducing the cost of large in vitro assays and studies to accelerate pre-clinical drug discovery.

“There’s an enormous pool of possible chemicals and proteins to investigate when developing a new drug, which makes it very expensive to do drug discovery because you have to test millions of molecules with thousands of different targets,” said Bing Hu, a PhD candidate in Computer Science and the lead author on the research. “We are figuring out ways that AI can make that faster and cheaper.”

One of the major challenges in pharmaceutical medicine development is understanding not only how a drug might affect the body in isolation but also how it might interact with other drugs or a person’s lifestyle. This information is particularly difficult to gather because scientific studies of drugs usually only focus on the drugs’ predetermined properties, not on how they may interact with other drugs.

Ultimately, the team hopes medical researchers can use Imagand in the future to understand how drugs interact, allowing them to eliminate potential new drug candidates that would have bad side effects or interactions.

“For example, this AI-enabled process can help us understand how toxic a drug is, how it affects the heart, or how it might interact negatively with other drugs commonly used in treating an illness,” said Helen Chen, a professor in the School of Public Health Sciences and Computer Science at Waterloo. “This is one example of how AI is helping us move towards more precise, personalized care.”

The research, titled “Drug discovery SMILES-to-pharmacokinetics diffusion models with deep molecular understanding“, is currently in preprint.



tags: ,


University of Waterloo




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence