ΑΙhub.org
 

Accelerating drug development with AI


by
09 April 2025



share this:

This picture is made up of 9 images in rows of 3. Each row shows a different image of a pill bottle spilling out pills onto a plain surface, on yellow or white backgrounds. On one side, the image is an original photograph. The next two iterations show it getting represented in progressively larger blocks of colour.Rens Dimmendaal & Banjong Raksaphakdee / Medicines (flipped) / Licenced by CC-BY 4.0

Developing new drugs to treat illnesses has typically been a slow and expensive process. However, a team of researchers at the University of Waterloo uses machine learning to speed up the development time.

The Waterloo research team has created “Imagand,” a generative artificial intelligence model that assesses existing information about potential drugs and then suggests their potential properties. Trained on and tested against existing drug data, Imagand successfully predicts important properties of different drugs that have already been independently verified in lab studies, demonstrating the AI’s accuracy.

Traditionally, bringing a successful drug candidate to market can cost between US$2 billion and US$3 billion and take over a decade to complete. Generative AI is posed to transform drug discovery by harnessing large amounts of drug data across diverse areas.

The image from the study shows a correlation between pairs of pharmacokinetic (PK) properties for a single drug. Each drug has its unique chemical profile and set of PK property values. The goal of the diagram is to show the distribution similarity between the real reported pairs of PK properties correlation from in vitro studies and those generated by the researchers’ model. This is important to show that the tool can be helpful in guiding and reducing the cost of large in vitro assays and studies to accelerate pre-clinical drug discovery.

“There’s an enormous pool of possible chemicals and proteins to investigate when developing a new drug, which makes it very expensive to do drug discovery because you have to test millions of molecules with thousands of different targets,” said Bing Hu, a PhD candidate in Computer Science and the lead author on the research. “We are figuring out ways that AI can make that faster and cheaper.”

One of the major challenges in pharmaceutical medicine development is understanding not only how a drug might affect the body in isolation but also how it might interact with other drugs or a person’s lifestyle. This information is particularly difficult to gather because scientific studies of drugs usually only focus on the drugs’ predetermined properties, not on how they may interact with other drugs.

Ultimately, the team hopes medical researchers can use Imagand in the future to understand how drugs interact, allowing them to eliminate potential new drug candidates that would have bad side effects or interactions.

“For example, this AI-enabled process can help us understand how toxic a drug is, how it affects the heart, or how it might interact negatively with other drugs commonly used in treating an illness,” said Helen Chen, a professor in the School of Public Health Sciences and Computer Science at Waterloo. “This is one example of how AI is helping us move towards more precise, personalized care.”

The research, titled “Drug discovery SMILES-to-pharmacokinetics diffusion models with deep molecular understanding“, is currently in preprint.



tags: ,


University of Waterloo




            AIhub is supported by:


Related posts :



Introducing the NASA Onboard Artificial Intelligence Research (OnAIR) platform: an interview with Evana Gizzi

  03 Jul 2025
Find out about the OnAIR platform, some of the particular challenges of deploying AI-based solutions in space, and how the tool has been used so far.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

  01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

Forthcoming machine learning and AI seminars: July 2025 edition

  30 Jun 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 July and 31 August 2025.
monthly digest

AIhub monthly digest: June 2025 – gearing up for RoboCup 2025, privacy-preserving models, and mitigating biases in LLMs

  26 Jun 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

RoboCupRescue: an interview with Adam Jacoff

  25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Making optimal decisions without having all the cards in hand

Read about research which won an outstanding paper award at AAAI 2025.

Exploring counterfactuals in continuous-action reinforcement learning

  20 Jun 2025
Shuyang Dong writes about her work that will be presented at IJCAI 2025.

What is vibe coding? A computer scientist explains what it means to have AI write computer code − and what risks that can entail

  19 Jun 2025
Until recently, most computer code was written, at least originally, by human beings. But with the advent of GenAI, that has begun to change.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence