ΑΙhub.org
 

#AAAI2025 workshops round-up 3: Neural reasoning and mathematical discovery, and AI to accelerate science and engineering


by
19 May 2025



share this:

Images from the workshop on “Neural Reasoning and Mathematical Discovery – An Interdisciplinary Two-Way Street”.

In this series of articles, we’re publishing summaries with some of the key takeaways from a few of the workshops held at the 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025). In this third round-up article, we hear from the organisers of the workshops on:

  • Neural Reasoning and Mathematical Discovery – An Interdisciplinary Two-Way Street
  • AI to Accelerate Science and Engineering

Neural Reasoning and Mathematical Discovery – An Interdisciplinary Two-Way Street

By Tiansi Dong

Organisers: Challenger Mishra, Mateja Jamnik, Pietro Liò, Tiansi Dong.

Recent progress in Sphere Neural Networks demonstrates various possibilities for neural networks to achieve symbolic-level reasoning. This workshop aimed to reconsider various problems and discuss walk-round solutions in the two-way street commingling of neural networks and mathematics.

Some key takeaways from the workshop were as follows:

  • Black-box neural networks can be successfully used to automatically raise mathematical conjectures and identities and generate new geometries.
  • Irrelevant to the amount of training data, black-box neural networks cannot reach symbolic-level logical reasoning.
  • Interdisciplinary approaches, from philosophy and neuroscience to mathematical modelling and artificial neural networks, can be successfully applied to scientific research, such as “What is curiosity?”

AI to Accelerate Science and Engineering

By Aryan Deshwal

Organisers: Aryan Deshwal, Jana Doppa, Syrine Belakaria, Vipin Kumar and Carla Gomes.

This workshop brought together researchers from artificial intelligence and diverse scientific domains to address new challenges towards accelerating scientific discovery and engineering design. This was the fourth iteration of the workshop, with the theme of AI for biological sciences following previous three years’ themes of AI for chemistry, earth sciences, and materials/manufacturing respectively. This workshop aims to achieve the following goals: 1. Identify and understand the challenges in applying AI to specific science and engineering problems. 2. Develop, adapt, and refine AI tools for novel problem settings and challenges. 3. Community-building and education to encourage collaboration between AI researchers and domain area experts.

The workshop has been growing significantly every year and saw double the number of papers presented and attendees this year. The program featured presentations from invited speakers, panel session and poster sessions covering a wide range of AI/ML methods and scientific/engineering applications.

The invited speakers’ presentations centered around several key themes:

  • Foundation models for therapeutic design
  • Generative models for drug discovery
  • Lab-in-the-loop antibody design with deep learning and Bayesian optimization
  • Promise and challenges of deep learning in genomics
  • Importance of causal inference and causal discovery in biological applications

The invited speakers also discussed their views on open challenges in the broader field. The panel discussion addressed important questions regarding challenges and opportunities with generative models in AI for biological sciences, how to establish effective collaborations between domain scientists/engineers and AI experts, and safety considerations for AI systems in the scientific context.

The papers presented at the workshop covered wide-ranging application areas including materials science, chemistry, biological sciences, agricultural sciences, physics, manufacturing, and energy systems.


You can read the other workshop summary articles here:



tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: June 2025 – gearing up for RoboCup 2025, privacy-preserving models, and mitigating biases in LLMs

  26 Jun 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

RoboCupRescue: an interview with Adam Jacoff

  25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Making optimal decisions without having all the cards in hand

Read about research which won an outstanding paper award at AAAI 2025.

Exploring counterfactuals in continuous-action reinforcement learning

  20 Jun 2025
Shuyang Dong writes about her work that will be presented at IJCAI 2025.

What is vibe coding? A computer scientist explains what it means to have AI write computer code − and what risks that can entail

  19 Jun 2025
Until recently, most computer code was written, at least originally, by human beings. But with the advent of GenAI, that has begun to change.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

  18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Interview with Mahammed Kamruzzaman: Understanding and mitigating biases in large language models

  17 Jun 2025
Find out how Mahammed is investigating multiple facets of biases in LLMs.

Google’s SynthID is the latest tool for catching AI-made content. What is AI ‘watermarking’ and does it work?

  16 Jun 2025
Last month, Google announced SynthID Detector, a new tool to detect AI-generated content.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence