ΑΙhub.org
 

Tweets from #ICLR2019


by
16 May 2019



share this:

ICRL, the International Conference on Learning Representations, was held May 6th to 9th 2019 in New Orleans.

Relive the conference through some of the top tweets (#ICLR2019).

Invited talks

Best Papers

Congratulations to the two ICLR 2019 Best Paper winners!

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (arXiV)
Jonathan Frankle · Michael Carbin

Abstract - Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective.
We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.

Summary in MIT Tech Review.

Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks (arXiv)
Yikang Shen · Shawn Tan · Alessandro Sordoni · Aaron Courville

Abstract - Natural language is hierarchically structured: smaller units (e.g., phrases) are nested within larger units (e.g., clauses). When a larger constituent ends, all of the smaller constituents that are nested within it must also be closed. While the standard LSTM architecture allows different neurons to track information at different time scales, it does not have an explicit bias towards modeling a hierarchy of constituents. This paper proposes to add such an inductive bias by ordering the neurons; a vector of master input and forget gates ensures that when a given neuron is updated, all the neurons that follow it in the ordering are also updated. Our novel recurrent architecture, ordered neurons LSTM (ON-LSTM), achieves good performance on four different tasks: language modeling, unsupervised parsing, targeted syntactic evaluation, and logical inference.

And a summary tweet from Microsoft with an accessible blog post.

Increasing diversity

Online presentations

38 presentations can be watched here.

As well as debates.

And here are a couple researchers putting their slides online.

Other summaries and highlights from the conference

AI for social good

Also, what is going on here?

Looks like a good PR move for their paper on the wizard of Wikipedia.

That's a wrap! See you all next year!




Sabine Hauert is Associate Professor at the University of Bristol, and Executive Trustee of AIhub.org
Sabine Hauert is Associate Professor at the University of Bristol, and Executive Trustee of AIhub.org




            AIhub is supported by:



Related posts :

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  06 Feb 2026
Sven honoured for his work on AI planning and search.

Congratulations to the #AAAI2026 award winners

  05 Feb 2026
Find out who has won the prestigious 2026 awards for their contributions to the field.

Forthcoming machine learning and AI seminars: February 2026 edition

  04 Feb 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 4 February and 31 March 2026.

#AAAI2026 social media round up: part 2

  03 Feb 2026
Catch up on the action from the second half of the conference.

Interview with Zijian Zhao: Labor management in transportation gig systems through reinforcement learning

  02 Feb 2026
In the second of our interviews with the 2026 AAAI Doctoral Consortium cohort, we hear from Zijian Zhao.
monthly digest

AIhub monthly digest: January 2026 – moderating guardrails, humanoid soccer, and attending AAAI

  30 Jan 2026
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

The Machine Ethics podcast: 2025 wrap up with Lisa Talia Moretti & Ben Byford

Lisa and Ben chat about the prevalence of AI slop, the end of social media, Grok and explicit content generation, giving legislation more teeth, anthropomorphising reasoning models, and more.

Interview with Kate Larson: Talking multi-agent systems and collective decision-making

  27 Jan 2026
AIhub ambassador Liliane-Caroline Demers caught up with Kate Larson at IJCAI 2025 to find out more about her research.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence