ΑΙhub.org
 

Machine learning accelerates discovery of solar-cell perovskites


by
28 May 2024



share this:

Through the generation of a dataset of accurate band gaps for perovskite materials and the use of machine learning methods, several promising halide perovskites are identified for photovoltaic applications. Credit: H. Wang (EPFL)

By Nik Papageorgiou

As we integrate solar energy into our daily lives, it has become important to find materials that efficiently convert sunlight into electricity. While silicon has dominated solar technology so far, there is also a steady turn towards materials known as perovskites due to their lower costs and simpler manufacturing processes.

The challenge, however, has been to find perovskites with the right “band gap”: a specific energy range that determines how efficiently a material can absorb sunlight and convert it into electricity without losing it as heat.

Now, an EPFL research project led by Haiyuan Wang and Alfredo Pasquarello, with collaborators in Shanghai and in Louvain-La-Neuve, have developed a method that combines advanced computational techniques with machine-learning to search for optimal perovskite materials for photovoltaic applications. The approach could lead to more efficient and cheaper solar panels, transforming solar industry standards.

The researchers began by developing a comprehensive and high-quality dataset of band-gap values for 246 perovskite materials. The dataset was constructed using advanced calculations based on hybrid functionals – a sophisticated type of computation that includes electron exchange, and improves upon the more conventional Density Functional Theory (DFT). DFT is a quantum mechanical modeling method used to investigate the electronic structure of many-body systems like atoms and molecules.

The hybrid functionals used were “dielectric-dependent,” meaning that they incorporated the material’s electronic polarization properties into their calculations. This significantly enhanced the accuracy of the band-gap predictions compared to standard DFT, which is particularly important for materials like perovskites where electron interaction and polarization effects are crucial to their electronic properties.

The resulting dataset provided a robust foundation for identifying perovskite materials with optimal electronic properties for applications such as photovoltaics, where precise control over band-gap values is essential for maximizing efficiency.

The team then used the band-gap calculations to develop a machine-learning model trained on the 246 perovskites, and applied it to a database of around 15,000 candidate materials for solar cells, narrowing down the search to the most promising perovskites based on their predicted band gaps and stability. The model identified 14 completely new perovskites, all with band gaps and high enough energetic stability to make them excellent candidates for high-efficiency solar cells.

Reference

High-quality data enabling universality of band-gap descriptor and discovery of new photovoltaic perovskites, Haiyuan Wang, Runhai Ouyang, Wei Chen, Alfredo Pasquarello, Journal of the American Chemical Society, 2024.



tags: ,


EPFL




            AIhub is supported by:


Related posts :



The Good Robot podcast: Lithium extraction in the Atacama with Sebastián Lehuedé

  13 Jan 2025
Eleanor and Kerry chat to Sebastián Lehuedé about data activism, the effects of lithium extraction, and the importance of reflexive research ethics.

Interview with Erica Kimei: Using ML for studying greenhouse gas emissions from livestock

  10 Jan 2025
Find out about work that brings together agriculture, environmental science, and advanced data analytics.

TELL: Explaining neural networks using logic

  09 Jan 2025
Alessio and colleagues have developed a neural network that can be directly transformed into logic.

Will AI revolutionize drug development? Researchers explain why it depends on how it’s used

  09 Jan 2025
Why we should be cautious about ambitious claims regarding AI models for new drugs.

The Machine Ethics podcast: Responsible AI strategy with Olivia Gambelin

Ben and Olivia chat about scalable AI strategy, AI ethics and responsible AI (RAI), bad innovation, values for RAI, risk and innovation mindsets, who owns the RAI strategy, and more.

AI weather models can now beat the best traditional forecasts

  06 Jan 2025
Using a diffusion model approach, a new system generates multiple forecasts to capture the complex behaviour of the atmosphere.

Human-AI collaboration in physical tasks

  03 Jan 2025
Creating an intelligent assistant that uses the sensors in a smartwatch to support physical tasks such as cooking and DIY.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association