ΑΙhub.org
 

AI-assisted camera system to monitor seabird behaviour


by
06 November 2020



share this:
Seagulls flying | AIhub

Researchers from Osaka University have combined bio-logging cameras with a machine learning algorithm to help them to shed light on hidden aspects of the lives of seabird species, including gulls and shearwaters.

Bio-logging is a technique involving the mounting of small lightweight video cameras and/or other data-gathering devices onto the bodies of wild animals. These systems allow researchers to observe various aspects of animals’ lives, such as behaviours and social interactions, with minimal disturbance.

However, the considerable battery life required for these high-cost bio-logging systems has proved limiting so far. “Since bio-loggers attached to small animals have to be small and lightweight, they have short runtimes and it was therefore difficult to record interesting infrequent behaviours,” explains study corresponding author Takuya Maekawa.

By using AI-assisted bio-loggers, researchers can use low-cost sensors to automatically detect behaviours of interest in real time, allowing them to conditionally activate high-cost (i.e., resource-intensive) sensors to target those behaviours.

The researchers have put together this video to explain how their system works:

The researchers used a random forest classifier algorithm to determine when to switch on the high-cost sensors. Their model uses accelerometer-based features, which can be used to detect the body movements of the animals with only a small (e.g., 1 second) delay between when data collection begins and when behaviours can first be detected. Features from accelerometers were used to train the model to detect whether the birds were flying, stationary or foraging.

You can see three examples of the camera in action below:

Read the research in full

Machine learning enables improved runtime and precision for bio-loggers on seabirds
Joseph Korpela, Hirokazu Suzuki, Sakiko Matsumoto, Yuichi Mizutani, Masaki Samejima, Takuya Maekawa, Junichi Nakai & Ken Yoda




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



AI UK 2025 conference recordings now available to watch

  11 Apr 2025
Listen to the talks from this year's AI UK conference.

#AAAI2025 workshops round-up 2: Open-source AI for mainstream use, and federated learning for unbounded and intelligent decentralization

  10 Apr 2025
We hear from the organisers of two workshops at AAAI2025 and find out the key takeaways from their events.

Accelerating drug development with AI

  09 Apr 2025
Waterloo researchers use machine learning to predict how new drugs could affect the body

ChatGPT’s Studio Ghibli-style images show its creative power – but raise new copyright problems

  08 Apr 2025
Social media has recently been flooded with images that look like they belong in a Studio Ghibli film.

#AAAI2025 invited talk round-up 1: labour economics, and reasoning about spatial information

  07 Apr 2025
We give a flavour of two plenary talks from the AAAI conference in Philadelphia.

Everything you say to an Alexa speaker will now be sent to Amazon

  04 Apr 2025
This change was implemented on 28 March 2025.

End-to-end data-driven weather prediction

  04 Apr 2025
A new AI weather prediction system, developed by a team of researchers, can deliver accurate forecasts.

Interview with Joseph Marvin Imperial: aligning generative AI with technical standards

  02 Apr 2025
Joseph tells us about his PhD research so far and his experience at the AAAI 2025 Doctoral Consortium.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association