ΑΙhub.org
 

Natural language processing model for African languages


by
17 November 2021



share this:

africa
Researchers have developed an AI model to help computers work more efficiently with a wider variety of languages.

African languages have received relatively little attention from computer scientists, so few natural language processing capabilities have been available to large swaths of the continent. A new language model, developed by researchers at the University of Waterloo’s David R. Cheriton School of Computer Science, begins to fill that gap by enabling computers to analyze text in African languages for many useful tasks.

The new neural network model, which the researchers have dubbed AfriBERTa, uses deep-learning techniques to achieve state-of-the-art results for low-resource languages.

The neural network language model works specifically with 11 African languages, such as Amharic, Hausa, and Swahili, spoken collectively by more than 400 million people. It achieves competitive output quality despite learning from just one gigabyte of text, while other models require thousands of times more data.

“Pretrained language models have transformed the way computers process and analyze textual data for tasks ranging from machine translation to question answering,” said Kelechi Ogueji, a master’s student in computer science at Waterloo. “Sadly, African languages have received little attention from the research community.”

“One of the challenges is that neural networks are bewilderingly text- and computer-intensive to build. And unlike English, which has enormous quantities of available text, most of the 7,000 or so languages spoken worldwide can be characterized as low-resource, in that there is a lack of data available to feed data-hungry neural networks.”

Most of these models work using a technique known as pretraining. To accomplish this, the researcher presents the model with text where some of the words have been covered up or masked. The model then has to guess the masked words. By repeating this process, many billions of times, the model learns the statistical associations between words.

“Being able to pretrain models that are just as accurate for certain downstream tasks, but using vastly smaller amounts of data has many advantages,” said Jimmy Lin, the Cheriton Chair in Computer Science and Ogueji’s advisor. “Needing less data to train the language model means that less computation is required and consequently lower carbon emissions associated with operating massive data centres. Smaller datasets also make data curation more practical, which is one approach to reduce the biases present in the models.”

“This work takes a small but important step to bringing natural language processing capabilities to more than 1.3 billion people on the African continent.”

Assisting Ogueji and Lin in this research is Yuxin Zhu, who recently completed an undergraduate degree in computer science at Waterloo. Together, they presented their research paper, Small data? No problem! Exploring the viability of pretrained multilingual language models for low-resource languages, at the Multilingual Representation Learning Workshop at the 2021 Conference on Empirical Methods in Natural Language Processing.



tags: ,


University of Waterloo

            AIhub is supported by:



Subscribe to AIhub newsletter on substack



Related posts :

The Good Robot podcast: what makes a drone “good”? with Beryl Pong

  20 Feb 2026
In this episode, Eleanor and Kerry talk to Beryl Pong about what it means to think about drones as “good” or “ethical” technologies.

Relational neurosymbolic Markov models

and   19 Feb 2026
Relational neurosymbolic Markov models make deep sequential models logically consistent, intervenable and generalisable

AI enables a Who’s Who of brown bears in Alaska

  18 Feb 2026
A team of scientists from EPFL and Alaska Pacific University has developed an AI program that can recognize individual bears in the wild, despite the substantial changes that occur in their appearance over the summer season.

Learning to see the physical world: an interview with Jiajun Wu

and   17 Feb 2026
Winner of the 2019 AAAI / ACM SIGAI dissertation award tells us about his current research.

3 Questions: Using AI to help Olympic skaters land a quint

  16 Feb 2026
Researchers are applying AI technologies to help figure skaters improve. They also have thoughts on whether five-rotation jumps are humanly possible.

AAAI presidential panel – AI and sustainability

  13 Feb 2026
Watch the next discussion based on sustainability, one of the topics covered in the AAAI Future of AI Research report.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

  12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

From Visual Question Answering to multimodal learning: an interview with Aishwarya Agrawal

and   11 Feb 2026
We hear from Aishwarya about research that received a 2019 AAAI / ACM SIGAI Doctoral Dissertation Award honourable mention.



AIhub is supported by:







Subscribe to AIhub newsletter on substack




 















©2026.02 - Association for the Understanding of Artificial Intelligence